Telegram Web Link
Forwarded from F14 News
🔔 به اطلاع کاربران عزیز می‌رساند سرور جدیدی با عنوان زیر
🅰️🇺🇸USA52-F14
به لیست سرورها اضافه شد.

🌟 کاربرانی که به جهت استفاده از سرویس gemini با IP امریکا مشکل داشتند می‌توانند از این سرور استفاده نمایند. با این سرور می‌توانید Gemini Advanced یکساله را هم فعال نمایید.


به منظور بهره‌مندی از سرورهای جدید و بروز شده اشتراک خودتون رو آپدیت نمایید.

🔹 آموزش آپدیت اشتراک در اپ v2rayng

🔹 آموزش آپدیت اشتراک در اپ Fair VPN

🔹 آموزش آپدیت اشتراک در نرم افزار Nekoray

❤️ لطفا با معرفی سرویس ما به دوستان و آشنایان خود از ما حمایت کنید. 🙏

⚡️⚡️⚡️⚡️⚡️⚡️⚡️⚡️⚡️⚡️⚡️⚡️
📣 Channel: @F14News
🤖 Bot: @F14PanelBot
👤 Support: @F14Sup
🆘 Help: @F14Help
⚡️⚡️⚡️⚡️⚡️⚡️⚡️⚡️⚡️⚡️⚡️⚡️
Please open Telegram to view this post
VIEW IN TELEGRAM
Application of Machine Learning and Large Language Models in Healthcare for Data Prediction and Summarization

💥MSc thesis from Georgia Southern University, USA

https://digitalcommons.georgiasouthern.edu/cgi/viewcontent.cgi?article=4171&context=etd

#پایان_نامه #یادگیری_ماشین #منابع

🔸 مطالب بیشتر 👇👇

@AI_DeepMind
صدور روادید دانشجویی آمریکا متوقف شد

مارکو روبیو، وزیر خارجه ایالات متحده، روز سه‌شنبه در دستوری فوری به تمامی سفارت‌خانه‌های آمریکا در جهان، خواستار توقف وقت‌دهی جدید برای مصاحبهٔ روادید دانشجویی شد.
The Mass
Era
این آهنگو برای تریلر شبیه سازی جهنم استفاده کردن این اهنگ محتواش اصلا ربطی به جهنم نداره😂
حتی دکتر یان لکون هم باشی منبع اخبارتو به دانشجوهات کانال ما هست
@AI_DeepMind
📊 میزان (MIZAN): جامع‌ترین لیدربورد ارزیابی مدل‌های زبانی بزرگ (LLM) در زبان فارسی

پس از عرضه بنچمارک FaMTEB برای ارزیابی مدل‌های Text Embedding، این‌بار دستاوردی تازه‌ در پردازش زبان طبیعی فارسی

برخی ویژگی های میزان:
- مقایسه جامع مدل‌های روز: ارزیابی دقیق مدل‌های متن‌باز و بسته با هدف ایجاد یک مرجع معتبر برای فارسی‌زبانان
- پوشش ۶ بنچمارک تخصصی: سنجش عملکرد مدل‌ها در چت، پیروی از دستورالعمل، NLU، NLG، استدلال منطقی و دانش عمومی
- تنوع کاربردی بالا: سناریوهای واقعی فارسی مانند گفت‌وگوی چندمرحله‌ای، RAG، تولید محتوا و پاسخ‌گویی منطقی


🏆 بنچمارک‌های کلیدی میزان:
Persian MT-Bench:
ارزیابی چت چندمرحله‌ای و کاربرد در سیستم‌های RAG
Persian IFEval:
بررسی توانایی مدل‌ها در پیروی از دستورالعمل‌ها
PerCoR:
اولین بنچمارک استدلال منطقی در زبان فارسی
PerMMLU:
سنجش دانش عمومی و تخصصی مدل‌ها در موضوعات متنوع در زبان فارسی
Persian NLU:
ارزیابی درک زبان طبیعی فارسی
Persian NLG:
ارزیابی تولید زبان طبیعی فارسی

https://huggingface.co/spaces/MCINext/mizan-llm-leaderboard

#متن_باز #مقاله

🔸 مطالب بیشتر 👇👇

@AI_DeepMind
اخیراً خبری جذاب در مورد همکاری بین xAI (شرکت ایلان ماسک) و تلگرام منتشر شده که برای علاقه‌مندان به هوش مصنوعی و دیپ لرنینگ خیلی هیجان‌انگیزه! طبق اعلام پاول دوروف، مدیرعامل تلگرام، این پلتفرم قراره با xAI وارد یه همکاری یک‌ساله بشه تا چت‌بات پیشرفته Grok رو به تلگرام بیاره. این ادغام به کاربران تلگرام (که بیش از یک میلیارد نفرن!) امکان می‌ده از قابلیت‌های Grok مثل خلاصه‌سازی چت‌ها، اصلاح متن و حتی بررسی صحت محتوای کانال‌ها استفاده کنن. گفته شده تلگرام در ازای این همکاری ۳۰۰ میلیون دلار نقد و سهام از xAI دریافت می‌کنه، به علاوه ۵۰٪ از درآمد اشتراک‌های xAI که از طریق تلگرام فروخته بشه. این حرکت می‌تونه تجربه کاربری تلگرام رو متحول کنه و رقابت در حوزه هوش مصنوعی رو داغ‌تر کنه!

منبع: grok 😁

🔸 مطالب بیشتر 👇👇

@AI_DeepMind
🔸 @AI_Person
استفاده از مدل‌های یادگیری ماشین برای بهبود پیش‌بینی سمیت ترکیبات شیمیایی، به‌ویژه در فرآیند کشف دارو، با تمرکز بر چالش‌ها و راهکارهای عملی برای اطمینان از دقت، اعتبار و قابلیت استفاده از این مدل‌ها در دنیای واقعی.

▪️ Machine Learning for Toxicity Prediction Using Chemical Structures: Pillars for Success in the Real World

#مقاله #شیمی #داروسازی #زیست_شناسی #هوش_مصنوعی #پزشکی

🔸 مطالب بیشتر 👇👇

@AI_DeepMind
🔸 @AI_Person
Forwarded from DeepMind AI Expert (Farzad 🦅)
آیا مدل‌های زبان بزرگ (LLM) می‌توانند تصمیم‌گیری بالینی (CDM) را در سناریوهای دنیای واقعی متحول کنند؟

▪️ Medchain: Bridging the Gap Between LLM Agents and Clinical Practice through Interactive Sequential Benchmarking


#مقاله #ایده_جذاب #علوم_پزشکی

🔸 مطالب بیشتر 👇👇

@AI_DeepMind
🔸 @AI_Person
نانوربات‌ها یا ریزربات‌های زیستی، یکی از شگفت‌انگیزترین دستاوردهای فناوری پزشکی در قرن ۲۱ هستند که هدف آن‌ها محافظت از بدن انسان در برابر بیماری‌ها از درون است. این ربات‌های فوق‌ریز در ابعادی به کوچکی مولکول، می‌توانند درون جریان خون حرکت کنند، بافت‌ها را اسکن نمایند، سلول‌های آسیب‌دیده را ترمیم کنند و داروها را با دقت به نقطه‌ی هدف برسانند. برخی از آن‌ها از ساختارهای DNA تشکیل شده‌اند و در پاسخ به محیط‌های خاص مثل تومورها فعال می‌شوند. حتی نمونه‌هایی ساخته شده‌اند که با استفاده از میدان مغناطیسی خارجی هدایت می‌شوند یا با الگوریتم‌های هوش مصنوعی می‌توانند تصمیم بگیرند کجا بروند و چه کنند.

پیشرفت‌های اخیر نشان می‌دهد که این نانوربات‌ها نه‌تنها توانایی تشخیص زودهنگام سرطان یا بیماری‌های ویروسی مانند HIV را دارند، بلکه می‌توانند ویروس‌ها را به‌صورت فیزیکی به دام بیندازند، بدون آنکه آسیبی به بافت سالم وارد شود. در برخی مطالعات، از ربات‌های DNA برای کاهش اندازه تومورهای سرطانی تا ۷۰٪ استفاده شده و نتایج خیره‌کننده‌ای به‌دست آمده است. از طرف دیگر، با پیشرفت‌های در حوزه‌ی هوش مصنوعی، این ربات‌ها می‌توانند به‌صورت کاملاً خودکار و هوشمند عمل کنند، مقصد‌یابی کنند و عملکرد خود را بهبود دهند. همین قابلیت‌ها است که امیدها را برای درمان بسیاری از بیماری‌های لاعلاج زنده کرده است.

اگر روند پیشرفت نانوفناوری با همین سرعت ادامه یابد، انتظار می‌رود تا سال ۲۰۳۰ نانوربات‌ها تبدیل به ارتشی میکروسکوپی در بدن انسان شوند که به‌طور ۲۴ ساعته از سلامت ما محافظت می‌کنند. در این صورت، بسیاری از بیماری‌ها پیش از آنکه علائم خود را نشان دهند متوقف می‌شوند، بافت‌های فرسوده بازسازی می‌شوند و فرایند پیری به تعویق می‌افتد یا حتی معکوس می‌شود. چنین تحولی به‌معنای واقعی، ما را وارد عصری می‌کند که در آن "نامیرا شدن" دیگر رؤیایی علمی–تخیلی نیست، بلکه واقعیتی علمی است که در آستانه وقوع قرار دارد.

▪️ Nanorobot with hidden weapon kills cancer cells
▪️ Nanorobots move closer to clinical trials with new model that helps them navigate through the bloodstream


#پزشکی #نانو‌ #ربات #هوش_مصنوعی
#ژنتیک #بیوتکنولوژی #رباتیک

🔸 مطالب بیشتر 👇👇

@AI_DeepMind
شرکت چینی Kuaishou از نسخه 2.1 ابزار هوش مصنوعی ویدیوساز خود به نام Kling رونمایی کرد؛ ابزاری که با هدف کاهش زمان و هزینه تولید ویدیوهای کوتاه توسعه یافته است. Kling 2.1 می‌تواند ویدیوهایی با کیفیت 1080p در کمتر از یک دقیقه تولید کند و عملکرد حرکتی و شبیه‌سازی فیزیکی آن به‌طور محسوسی بهبود یافته است. کاربران کافی است تصویری آپلود کرده یا دستور متنی (پرامپت) وارد کنند تا ویدیویی متحرک و واقع‌گرایانه دریافت کنند. هزینه تولید یک ویدیوی 1080p با جزئیات بالا برابر(تقریباً 1.5 دلار)، و نسخه‌های ساده‌تر یا با وضوح 720p نیز با هزینه کمتر در دسترس هست.
این به‌روزرسانی هم‌زمان با رشد ۶ درصدی ارزش سهام Kuaishou در بورس هنگ‌کنگ منتشر شد، اتفاقی که نشان‌دهنده استقبال بازار از پیشرفت‌های این شرکت است. رقابت در دنیای #هوش_مصنوعی چینی نیز وارد مرحله داغ‌تری شده، چراکه شرکت تنسنت هم‌زمان ابزار تصویر به ویدیو متن‌باز خود را معرفی کرده و از سوی دیگر، گوگل نیز با انتشار Veo 3 وارد این میدان شده است. Kling 2.1 حالا یکی از قدرتمندترین ابزارهای تولید ویدیو با هوش مصنوعی در سطح جهانی محسوب می‌شود.


@AI_DeepMind
🔸 @AI_Person
What is the purpose of the activation function in a neural network?
Anonymous Poll
13%
To normalize the output
67%
To introduce non-linearity
6%
To reduce overfitting
14%
To initialize weights
الهه حسین نژاد کجاست؟

روز چهارم خرداد ماه 1404، الهه حسین‌ نژاد مانند هر روز، پس از پایان ساعت کاری‌ اش از محل کار خود در میدان آزادی تهران راهی خانه شد. مقصد او اسلامشهر بود. خانواده می‌گویند در آخرین تماس تلفنی، الهه اعلام کرده بود که در مسیر بازگشت است. اما آن تماس، به طرز مشکوکی آخرین نشانه از او بود. تلفن همراه خاموش شد و اثری از او باقی نماند.

اکنون بیش از 7 روز از این اتفاق می‌گذرد، اما هیچ سرنخ مشخصی در دست نیست. خانواده او در دلشوره و اضطراب دست و پا می زنند.
برای پیدا شدن الهه بازنشر کنید
In decision trees, what criterion is commonly used to split nodes in classification tasks?
Anonymous Poll
8%
Mean Squared Error
72%
Entropy or Gini Index
9%
Euclidean Distance
11%
Log Likelihood
Forwarded from DeepMind AI Expert (Farzad 🦅)
Please open Telegram to view this post
VIEW IN TELEGRAM
Owen 3 release

https://qwenlm.github.io/blog/qwen3/

🔸 مطالب بیشتر 👇👇

@AI_DeepMind
🔸 @AI_Person
Forwarded from Ali's Notes
🚨 Paper Alert

🔹🔹🔹
From Tokens to Thoughts: How LLMs and Humans Trade Compression for Meaning
🔹🔹🔹


این یکی از باحال ترین مقاله هایی هستش که ژورافسکی و یان لکون که نام های آشنایی هستن بیرون دادن.
تو این مقاله سعی کردن تفاوت بین LLM ها و سیستم زبانی انسان ها رو مشخص کنن.
و نتیجه های باحالی به دست اوردن.

مدل های زبانی به صورت اگرسیو طور کامپرس میکنن مفاهیم رو و اونقدر که دیگه با مفاهیم ما انسان ها تفاوت ایجاد میشه.

قضیه اینکه این مدل ها در اصل یه عالمه دیتا رو که بخوردشون میدیم کامپرس میکنن اطلاعات رو و بعد چون کامپرس شدن (فضای کمتری میگیرن تو فضا) و بعد زمان تولید یا جنریشن این اطلاعات کامپرس شده دیکود میشن.

مغز ماهم همینطور هستش و مثلا شما ممکنه یه کتاب ۱۰۰۰ صفحه ای رو بخونید و بعدش تو ذهن شما یه سامری یا خلاصه ای تو ذهن شما میمونه و شما بعد ها زمانی که بازگو میکنید میتونید اون خلوص داستان رو با طبع ایجاد variation بازگو کنید.



As the mental scaffolding of human cognition, concepts enable efficient interpretation, generalization
from sparse data, and rich communication. For LLMs to transcend surface-level mimicry and achieve
more human-like understanding, it is critical to investigate how their internal representations navigate
the crucial trade-off between information compression and the preservation of semantic meaning. Do
LLMs develop conceptual structures mirroring the efficiency and richness of human thought, or do
they employ fundamentally different representational strategies?



حتما این مقاله رو بخونید ‌:)



🔗 https://arxiv.org/pdf/2505.17117v2

@css_nlp
Please open Telegram to view this post
VIEW IN TELEGRAM
#مقاله زیر که با همکاری متا، گوگل و انویدیا به بررسی میزان حافظه‌برداری مدل‌های زبانی بزرگ از داده‌های آموزشی می‌پردازد. نویسندگان با معرفی روشی جدید، حافظه‌برداری را به دو بخش مجزا تقسیم می‌کنند:

1. حافظه‌برداری ناخواسته (Unintended Memorization): اطلاعاتی که مدل به‌طور خاص از داده‌های آموزشی حفظ کرده است.

2. تعمیم (Generalization): توانایی مدل در یادگیری و تعمیم از فرآیند تولید داده‌های واقعی.

با حذف تأثیر تعمیم، نویسندگان توانستند میزان حافظه‌برداری ناخواسته را اندازه‌گیری کرده و ظرفیت حافظه‌ای مدل‌ها را تخمین بزنند. برای مدل‌های خانواده GPT، این ظرفیت تقریباً ۳٫۶ بیت به ازای هر پارامتر برآورد شده است.

این تحقیق با آموزش صدها مدل ترنسفورمر و تحلیل رفتار آن‌ها، قوانین مقیاس‌پذیری جدیدی را ارائه می‌دهد که رابطه بین ظرفیت مدل، اندازه داده‌ها و احتمال شناسایی عضویت داده‌ها در مجموعه آموزشی را توضیح می‌دهد.

▪️ How much do language models memorize?

🔸 مطالب بیشتر 👇👇

@AI_DeepMind
🔸 @AI_Person
2025/07/01 11:34:18
Back to Top
HTML Embed Code: