Telegram Web Link
Llama 3.2 From Scratch

This repository contains a from-scratch, educational PyTorch implementation of Llama 3.2 text models with minimal code dependencies. The implementation is optimized for readability and intended for learning and research purposes.

📌 Guide


@Machine_learn
👍2🔥2
Carnegie Mellon University's "Advanced Algorithms" course notes

📄 Book


@Machine_learn
👍21
✔️ "Speech and Language Processing":


🟡Link

@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
👍31
📃 Advances and Mechanisms of RNA–Ligand Interaction Predictions


📎 Study the paper

@Machine_learn
👍2🔥2🥰1
eswa127077.pdf
1.9 MB
Multi-modal wound classification using wound image and location by Swin Transformer and Transformer

New paper

کار مشترکی که با دوستان تونستیم چاپش رو بگیریم.

Journal: Expert system with application

If: 7.5
@Machine_learn
Please open Telegram to view this post
VIEW IN TELEGRAM
4🔥2
شنبه شروع اين پروژه مي باشد.
دوستاني كه مايل هستند نفر دوم از اين مقاله باقي موند است.
@Raminmousa
Compute Forecast

📚 Read


@Machine_learn
👍4
Large Language Model Agent: A Survey on Methodology, Applications and Challenges


Paper: https://arxiv.org/pdf/2503.21460v1.pdf

Code: https://github.com/luo-junyu/awesome-agent-papers

@Machine_learn
👍32
Artificial Intelligence Index Report 2025

📚 Report


@Machine_learn
1👍1
Forwarded from Github LLMs
SeedLM: Compressing LLM Weights into Seeds of Pseudo-Random Generators

📚 Read


@LLM_learning
👍2
https://arxiv.org/pdf/2504.10452

Integrating Vision and Location with Transformers: A
Multimodal Deep Learning Framework for Medical
Wound Analysis


New Paper

Ramin Mousa
Hadis Taherinia
Khabiba Abdiyeva
Amir Ali Bengari
Mohammadmahdi Vahediahmar

@Machine_learn
👍61
Mathematics for Machine Learning

📚 Book



@Machine_learn
5
Theory—Theoretical & Mathematical Foundations

📓 Book

@Machine_learn
4
Forwarded from Papers
با عرض سلام
از اين مقاله نفرات ٤ و ٥ باقي مونده دوستاني كه مايل به همكاري هستن لطفا با بنده در ارتباط باشن.


یکی از ابزارهای خوبی که بنده تونستم توسعه بدم ابزار Stock Ai می باشد. در این ابزار از ۳۶۰ اندیکاتور استفاده کردم. گزارشات back test این ابزار در ویدیو های زیر موجود می باشد.

May 2024 :

https://youtu.be/aSS99lynMFQ?si=QSk8VVKhLqO_2Qi3

July 2014:

https://youtu.be/ThyZ0mZwsGk?si=FKPK7Hkz-mRx-752&t=209



@Raminmousa
👍3
Datasets Guide

📚 Guide


@Machine_learn
👍3
2025/07/09 15:58:11
Back to Top
HTML Embed Code: