Telegram Web Link
Media is too big
VIEW IN TELEGRAM
🧬 اندازه گیری ابعاد ساختارهای میکرونی با لیزر

اندازه گیری ابعاد ساختارهای میکرونی به صورت غیرتماسی یکی از کاربردهای بسیار جذاب لیزر است. در این ویدیو با انجام یک آزمایش ساده این موضوع نشان داده شده است و مبانی فیزیکی این موضوع نیز تشریح شده است.

البته این آزمایش را به طریقی ساده تر از آنچه ما انجام دادیم نیز میتوانید انجام دهید. کافی است که یک لیزر پوینتر با قیمت کمتر از یک دلار داشته باشید و یک تار مو! با استفاده از یک چسب شیشه ای اقدام به چسباندن مو در محل خروج نور لیزر نمایید. هر چقدر مو یا سیمی که استفاده می‌کنید ضخامت کمتری داشته باشد، الگوی تداخلی که روی دیوار تشکیل می‌شود وضوح بیشتری خواهد داشت. به عبارت دیگر، در ابعاد کوچکتر دقت این روش بیشتر خواهد شد و این موضوع یکی دیگر از مزیت‌های استفاده از روش تداخل‌سنجی برای سنجش ضخامت و تعیین ابعاد اجسام است. #QC19

💻 تولید محتوا توسط دکتر حسین طالب

🌀 @QuantCamp | کمپین کوانتوم
Please open Telegram to view this post
VIEW IN TELEGRAM
📌 آمار هفته سوم کمپین زمستانی کوانتوم

🔹 تعداد شرکت کنندگان: ۳۰
🔸 بازدید کل کمپین: ۶۲،۵۲۴
🔹 اشتراک گذاری خصوصی: ۲،۳۲۵
🔸 اشتراک گذاری عمومی: ۱۷۲

📱پربازدید ترین محتواهای هفته

🥇 معرفی لیزر ولدینگ: 4.7K
🥈 مقدمه‌ای بر مکانیک کوانتومی: 2.3K
🥉 کامپیوتر کوانتومی چیه؟ : 1.9K

💻 از هم اکنون میتوانید برای هفته آینده محتواهای ترویجی خود را به ادمین کمپین ارسال نمایید.

🎁 جوایز کمپین
💎 نحوه شرکـت در کمپین
💻 انواع محتوا و فرمت ارسال
💡سوالات متداول و نکات کلیدی

🌀 @QuantCamp | کمپین کوانتوم
🔎 نکات مهم در داوری محتوا

تیم کمپین متعهد به حفظ کیفیت محتواهای ترویجی است. از اینرو قبل از پذیرش و انتشار پست ها چهار مرحله ارزیابی صورت میگیرد:

1️⃣ اولین مرحله مربوط به موضوع محتوا است.موضوع محتوا باید مستقیما به مبانی و کاربردهای کوانتوم و یا اپتیک مربوط باشد و این ارتباط در محتوا باید به خوبی شفاف باشد. مسائلی که به صورت غیر مستقیم به کوانتوم یا اپتیک مربوط میشود، مانند نظریه ریسمان، ذرات بنیادی، کیهان شناسی، ابررسانایی، پراکندگی نور، پدیده های جوی و ... جزو محتوای قابل قبول برای کمپین قرار نمیگیرند.

2️⃣ دومین مرحله ارزیابی، بررسی فرمت محتوا است که باید در قالب های معرفی شده تولید شود. اگر محتوا ویدیو است، یا باید مستقیما توسط شرکت کننده تولید شده باشد و یا ویدیوهای با کیفیت و جذاب خارجی را دوبله و یا زیرنویس کرده باشد. اگر محتوا متنی باشد باید در قالب یک متن خلاصه و در عین حال جامع (شامل مقدمه، شرح اهمیت و کاربرد موضوع و نتیجه گیری) یک موضوع را توضیح داده و جمع بندی نماید. از ذکر اطلاعات پراکنده، کلی، مبهم و تعاریف تکراری در محتوای متنی خودداری نمایید. همچنین فرض بر این است که مخاطب به مفاهیم تخصصی نا آشنا است از این رو باید در متن یک موضوع را به درستی مطرح نموده و جمع بندی نمایید تا مخاطب به یک درک کلی از موضوع برسد. در مورد محتوای خبری نیز ضروری است که خبر مربوط به یک سال اخیر باشد و اهمیت خبر توضیح داده شود. گزارش هایی که در مورد مقالات و خبرهای گذشته تر است میتواند در قالب محتوای متنی به صورت جامع تر ارائه گردد.

3️⃣ سومین و مهمترین مرحله ارزیابی محتوا از نظر دقت علمی است. در این مرحله محتوا به دقت بررسی میگردد تا هیچ بخش آن خلاف حقایق علمی نباشد و همچنین منابع محتوا نیز از نظر صحت و سقم بررسی میگردد. نظراتی که توسط دبیر علمی کمپین دریافت میشود ملاک ارزیابی ما است و تیم کمپین در جایگاه ویرایش علمی قرار ندارد. از اینرو از بحث های دنباله دار و توجیه برای پذیرش محتوا خودداری فرمایید. همچنین منابع باید از نظر علمی معتبر باشند. سایت، وبلاگ و کانال منبع علمی معتبر محسوب نمیشوند.

4️⃣ چهارمین مرحله نیز بررسی کیفیت و جذابیت محتوا است که میتواند در پذیرش یک محتوا نقش پررنگی داشته باشد. در محتوای ویدیویی جذابیت و کیفیت ویدیو بسیار مهم است. در محتوای متنی ادبیات و نوع نگارش باید قابل قبول باشد. همچنین اگر متن ترجمه است باید اصطلاحات تخصصی به خوبی به فارسی برگردان شده باشد. میتوانید با مراجعه به پست های منتشر شده در کمپین تخمینی از کیفیت قابل قبول بدست آورید.
Media is too big
VIEW IN TELEGRAM
🔵 کیوبیت‌های کامپیوترهای کوانتومی چطوری ساخته می‌شوند؟

روش‌های مختلفی برای ساخت کیوبیت‌ها که کلیدی‌ترین بخش کامپیوتر‌های کوانتومی هستن وجود داره. در این ویدئو متداول‌ترین روش‌های ساخت کیوبیت‌های کامپیوترهای کوانتومی رو شرح می‌دم و مزایا و معایب هر کدوم رو مطرح می‌کنم.

🧑🏻‍💻 تولید محتوا توسط مجله خلقت

#QC20 #کیوبیت #کامپیوتر_کوانتومی #کوانتوم

🌀 @QuantCamp | کمپین کوانتوم
This media is not supported in your browser
VIEW IN TELEGRAM
🧬 شکل و اندازه الکترون از دیدگاه مکانیک کوانتومی

در سال 1924، یک دانشمند فرانسوی به نام لویی دوبروی پیشنهاد کرد که یک الکترون ماهیت دوگانه از خود نشان می دهد، یعنی یک الکترون هم ماهیت موجی و هم ماهیت ذره ای دارد.
یک الکترون یا هیچ شکلی ندارد و یا میتواند شکل‌های مختلفی به خود بگیرد.

هنگامی که الکترون به روشهایی مانند برخوردهای با سرعت بالا با الکترون یا ذرات دیگر برخورد میکند بیشتر شبیه یک ذره عمل میکند. طبق مدل استاندارد، وقتی یک الکترون بیشتر شبیه یک ذره است، هیچ شکلی ندارد. در این زمینه، فیزیکدانان الکترون را "ذره نقطه‌ای" می نامند ، بدین معنی که برهم کنش آن چنان است که گویی به طور کامل در یک نقطه از فضا قرار دارد و یک حجم سه بعدی ندارد.

اما وقتی یک الکترون بیشتر شبیه موج رفتار میکند، مانند الکترون در یک چاه پتانسیل و یا الکترون مقید به هسته یک اتم، شکل آن از تابع موج الکترون پیروی کند. معادله موج الکترون و در نتیجه شکل آن، تابعی از انرژی آن و شکل پتانسیلی است که آن الکترون را به دام انداخته است. #QC21

💻 تولید محتوا توسط دکتر حسین طالب

🌀 @QuantCamp | کمپین کوانتوم
Please open Telegram to view this post
VIEW IN TELEGRAM
🧬 برای ساخت یک لیزر به چه چیزهایی احتیاج داریم❗️

1)فضایی که از اتم‌ ها‌ی یک ماده پر شده باشد:
 این ماده می‌تواند گاز، مایع یا جامد باشد و به نام ماده فعال لیزر شناخته می‌شود. بسته به حالت ماده فعال می‌توانیم لیزر‌ ها‌ی گازی یا لیزر‌ های جامد داشته باشیم.

🔻ویژگی مهم ماده فعال، قابلیت برانگیخته شدن آن است.

2) سیستمی لازم داریم که با آن بتوانیم ماده‌ی محیط فعال را برانگیخته کنیم. منظور از برانگیخته کردن این است که با انرژی دادن به الکترون‌ ها‌ی اتم‌ها، آن‌ها را از حالت پایه‌ی انرژی یعنی کم‌ترین انرژی به حالت برانگیخته منتقل کنیم. 

3)برای ایجاد یک لیزر قرمز معمولی، می‌توان از یاقوت به‌عنوان ماده‌ی فعال لیزر استفاده کرد.

در تصویر پایین، ماده‌ی فعال با رنگ قرمز نشان داده شده است.

سیم‌ ها‌ی زیگزاگ زرد رنگ به دور آن پیچیده شده است و جریان آن مانند لامپ‌ ها‌ی فلش، دائما قطع و وصل می‌شود.

🔷 چگونه یک هسته‌ی کریستال و محفظه‌ ی سیمی لیزر را می‌سازند❗️

1) یک منبع ولتاژ قوی، جریان برق را دائما قطع و مجددا وصل می‌کند.

2)هر بار که جریان وصل می‌شود، انرژی زیادی به کریستال یاقوت منتقل می‌شود. این انرژی به‌ صورت فوتون به ماده فعال منتقل می‌شود.

3)اتم‌ ها‌ی کریستال یاقوت که در شکل زیر با دایره‌های سبزرنگ نشان داده شده‌اند، انرژی پمپ‌شده را جذب می‌کنند. در این هنگام، الکترون‌ها‌ی ظرفیت این اتم‌ها به حالت انرژی بالاتر منتقل می‌شوند. پس از گذشت چند میلی‌ثانیه، الکترون‌ها به حالت انرژی اولیه‌ی خود یا در اصطلاح به حالت پایه‌ی خود بازمی‌گردند و یک فوتون نور گسیل می‌کنند که در شکل با دایره‌ها‌ی آبی نشان داده شده‌ است. به این فرایند، مرحله‌ی گسیل خود‌به‌خودی گفته می‌شود.

4) فوتون‌ها‌ی گسیل‌شده از الکترون‌ها، در ماده‌ی فعال با سرعت نور حرکت رفت و برگشت انجام می‌دهند.

5)گاهی اتفاق می‌افتد که یکی از فوتون‌ها به یکی از الکترون‌ها‌ی برانگیخته برخورد می‌کند و باعث می‌شود که الکترون به حالت پایه‌ی خود بازگردد. در این صورت، پس از این فرایند، علاوه بر اینکه فوتون اولیه هنوز هم موجود است، فوتون دیگری نیز گسیل می‌شود که در اصطلاح به این فرایند گسیل القایی گفته می‌شود. اکنون، یک فوتون نور باعث تولید فوتون نوری دیگری شده است؛ یعنی نور تقویت شده (Light Amplification) که فرایند گسیل القایی (Stimulated Emission of Radiation) باعث آن شده است. در اینجا اگر حروف پررنگ را به هم بچسبانیم، کلمه‌ی LASER ساخته خواهد شد. در واقع نام لیزر دقیقا از نحوه‌ی کار آن گرفته شده است.

6) در ابتدا و انتها‌ی محیط لیزر، آینه‌هایی قرار دارند که فوتون‌ها‌ی تولیدشده را دائما بازتاب می‌کنند. بنابراین فوتون‌ها به‌صورت پیوسته در محیط لیزر در رفت و آمد هستند.

7) یکی از آینه‌ها‌ی به‌کاررفته در محیط لیزر، قسمتی از فوتون‌ها را بازتاب می‌کند و اجازه می‌دهد که بخشی از فوتون‌ها از محیط لیزر بیرون بروند.

😍 فوتون‌ها‌ی بیرون‌آمده از محیط لیزر، همان پرتو‌ها‌ی لیزری پر‌انرژی هستند که اکنون می‌توانند مورد استفاده قرار بگیرند. #QC22

💻 تولید محتوا توسط انجمن علمی مهندسی اپتیک و لیزر دانشگاه ملایر

🌀 @QuantCamp | کمپین کوانتوم
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🧬 پدیده‌های کوانتومی در زندگی ما

🟡 نظریه کوانتوم یکی از عجیب‌ترین دستاوردهای ذهن بشری است. ذات احتمالاتی و غیر متعین ذرات و یا امکان تونل زدن ذره و عبور از سد از جمله ویژگی‌های عجیب دنیای کوانتوم است که ما قبلا در فیزیک کلاسیک با آن‌ها روبرو نشده بودیم.

🟡 اما، شاید فکر کنید که مکانیک کوانتومی فقط در مکان‌های خاصی مثل آزمایشگاه‌های فیزیک یا در شتاب‌دهنده‌های ذرات مهم می‌شود.

🟡 ولی با دیدن این ویدئو خواهید فهمید که در پدیده‌های مهم روزمره ما مکانیک کوانتومی نقش مهمی دارد. عجایب مکانیک کوانتومی در اطراف ما در جریان است و ما به آن توجه نداریم. حیات ما در این سیاره، وابسته به قوانین دنیای کوانتومی است.
در حقیقت، مکانیک کوانتومی حتی از نوک بینی هم به ما نزدیکتر است#QC23

💻 تولید محتوا توسط مجله علم روز

🌀 @QuantCamp | کمپین کوانتوم
Please open Telegram to view this post
VIEW IN TELEGRAM
🧬 نظریه میدان های کوانتومی چه چیزی را بیان میکند؟

🔸در دهه ۱۹۶۰ میلادی به این پی بردیم که پروتون ها و نوترون ها کوچک ترین بخش ماده نیستند، بلکه هر پروتون از اجزای کوچک تری به نام کوراک ها تشکیل شدند؛ اما کوراک ها چطور؟ یکی از نظریاتی که در فیزیک مطرح است به ما میگوید که اصلا ذره ای درکار نیست!

🔹طبق نظریه میدان های کوانتومی، کیهان تنها از میدان ها ساخته شده است اما با این وجود اگر به دیوار ضربه ای بزنید دستتان از آن رد نمیشود زیرا میدان های تشکیل دهنده دیوار، میدان های دست شما را دفع می کنند. میدان یک مفهوم بنیادین در فیزیک است و این میدان های انرژی همه چیز را پدید آورده اند.

🔸این میدان‌ها از طریق چهار نیروی بنیادی با یکدیگر برهم‌کنش می‌کنند:

▫️نیروی گرانش
▫️نیروی الکترومغناطیس
▫️نیروی هسته ای قوی
▫️نیروی هسته ای ضعیف

🔹مواردی که در بالا نام برده شدند همگی با مفهوم میدان مرتبط هستند. و از این رو جهانی که در آن زندگی می‌کنیم از ۱۲ میدان مادی به همراه ۴ میدان نیرو، ساخته شده است. حال فرض کنید که این میدان ها باهم در حال تعامل باشند، چه اتفاقی خواهد افتاد؟ میدانی در حال نوسان ممکن است با میدانی مانند میدان الکترومغناطیسی تعامل داشته باشد، بنا بر این رویداد، این اتفاق به صورت زنجیره ای برای دیگر میدان ها نیز رخ میدهد و نوسان در آنان بر قرار است.

🔸اکنون مدل استاندارد ذرات بنیادی به ما برای درک این تعاملات، کمک میکند:
آیا دانشمندان قادر به این هستند که ذراتی که در مدل استاندارد ذرات بنیادی قرار دارند را ببینند؟ خیر چنین چیزی شدنی نیست. ذراتی که به دست شتاب دهنده ذرات (LHC) کشف شده اند تنها ارتعاشاتی هستند که آنها را نامگذاری کردند. برای نمونه، ارتعاشی از میدان الکترومغناطیس، فوتون نامگذاری شده است.

در این نظریه، میدان‌ها به عنوان متغیرهای اصلی در نظر گرفته می‌شوند و به صورت میدان‌های کوانتومی توصیف می‌شوند. این میدان‌ها تحت تأثیر عملگرهای کوانتومی قرار می‌گیرند که میزان انرژی و جرم ذرات را تعیین می‌کنند. با بهره گیری از این نظریه، میتوانیم پدیده‌های مختلفی را توصیف کنیم؛ از جمله تعامل ذرات با میدان‌ها، ایجاد و انتشار ذرات جدید در فضا، و انتقال نیروها و انرژی بین ذرات. همچنین، نظریه میدان های کوانتومی اصولی را برای توصیف و پیش‌بینی عملکرد ذرات در سطح کوانتومی را فراهم میکند؛ این نظریه به ما امکان می‌دهد تا به دقت بیشتری در درک رفتار سیستم‌های کوانتومی بپردازیم.
#فیزیک #کوانتوم #QC24

💻 تولید محتوا توسط انجمن نجوم گالیله

🌀 @QuantCamp | کمپین کوانتوم
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🧬 هامیلتونی در کوانتوم چیست؟

در مکانیک کوانتومی برای بررسی هر سیستم فیزیکی در ابتدا باید هامیلتونی آن را داشته باشیم. در واقع هامیلتونی ابزاری است برای تحلیل سیستم های کوانتومی. چه یک الکترون، چه اتم یا کیوبیت های کامپیوتر کوانتومی.

در این کلیپ کوتاه با این مفهوم مهم در کوانتوم آشنا میشویم. #QC25

💻 تولید محتوا توسط کانال مبانی کوانتوم

🌀 @QuantCamp | کمپین کوانتوم
Please open Telegram to view this post
VIEW IN TELEGRAM
📌 آمار هفته چهارم کمپین زمستانی کوانتوم

🔹 تعداد شرکت کنندگان: ۳۲
🔸 بازدید کل کمپین: ۸۲،۵۶۱
🔹 اشتراک گذاری خصوصی: ۲،۵۴۷
🔸 اشتراک گذاری عمومی: ۱۹۲

📱پربازدید ترین محتواهای هفته

🥇 ساخت لیزر: 5.5K
🥈 نظریه میدان های کوانتومی: 3.6K
🥉 پدیده‌های کوانتومی در زندگی: 3K

💻 از هم اکنون میتوانید محتواهای ترویجی خود را برای هفته آینده به ادمین کمپین ارسال نمایید.

🎁 جوایز کمپین
💎 نحوه شرکـت در کمپین
💻 انواع محتوا و فرمت ارسال
💡سوالات متداول و نکات کلیدی

🌀 @QuantCamp | کمپین کوانتوم
Media is too big
VIEW IN TELEGRAM
🔵 نمایشی در وصف «هیچ»! آیا هیچ می‌تونه جهان رو به وجود بیاره؟

در فیزیک کوانتوم و فلسفه از هیچ زیاد صحبت می‌شه.
این هیچ دقیقا چیه؟
آیا اصلا وجود خارجی داره؟
در این ویدئو در قالب یک نمایش در مورد «هیچ» در سطوح مختلف صحبت می‌‌کنم.
بعد از دیدن این ویدیو، وقتی می‌شنویم که میگن آیا هیچ می‌تونه جهان رو به وجود بیاره، بهتر می‌تونیم در مورد مفهوم هیچ فکر کنیم.

🧑🏻‍💻 تولید محتوا توسط مجله خلقت

#QC26 #کوانتوم #هیچ #خلاءکوانتومی

🌀 @QuantCamp | کمپین کوانتوم
🌀 یک ماه در کنار هم برای ترویج کوانتوم و اپتیک

❄️ ماه اول زمستان را در کنار یکدیگر گذراندیم و نتایج فوق العاده ای در ترویج مبانی و کاربردهای کوانتوم و اپتیک خلق کردیم

🙏🏻 از تک تک شما عزیزانی که در این راه ما را همراهی کرده اید سپاسگزاریم

📊 آمار ماه اول کمپین
🔹 بازدید فراخوان کمپین: ۱۸،۹۱۰
🔸 تعداد شرکت کنندگان: ۳۲
🔹 بازدید کل کمپین: ۱۰۴،۶۸۵
🔸 اشتراک گذاری خصوصی: ۳،۷۵۷
🔹 اشتراک گذاری عمومی: ۲۵۳

👁‍🗨 پربازدید ترین های ماه
🥇 اساس کار فیبر های نوری: 7.2K
🥈 نظریه میدان های کوانتومی: 5.4K
🥉 آشنایی با فیبرهای نوری: 4.2K

📱 پر انتشار ترین های ماه
🥇 پدیده‌های کوانتومی در زندگی: ۱۷۵
🥈 اثر ذهن بر پدیده های کوانتومی: ۱۷۱
🥉 کوانتوم به زبان ساده: ۱۴۹

🧑🏻‍💻 تولید کنندگان محتوای برتر
انجمن اپتیک و لیزر ملایر
مجله علم روز
مجله خلقت

📲 ترویج کنندگان برتر
کانال فیزیک اندیشه
انجمن علمی فیزیک مهندسی
کانال QUBSchool

💌 کمپین تا پایان زمستان برقرار است و تیم کمپین از تمام تولید کنندگان محتوا و صاحبان کانال های ترویج علم دعوت میکند تا در این رویداد شرکت نمایند.

🌀 @QuantCamp | کمپین کوانتوم
Media is too big
VIEW IN TELEGRAM
🧬 آیا مکانیک بوهمی، می‌تواند جایگزین مکانیک کوانتوم استاندارد باشد؟

🟣 مکانیک کوانتوم، یکی از موفق‌ترین نظریه‌های فیزیک است که با پیش‌بینی‌های دقیق، دستاوردهای مهمی در عرصه فیزیک و فناوری‌های پیشرفته به ارمغان آورده است.

🟣 اما، از همان روزهای نخست تولد این نظریه، افرادی از جمله اینشتین، با برخی مفاهیم این نظریه از جمله وجود عدم قطعیت و تفسیر احتمالاتی رخداد پدیده‌ها، مشکل داشتند. اینشتین معتقد بود : «خداوند تاس نمی‌ریزد» که اشاره به نارضایتی وی از نظریه کوانتوم است.

🟣 دیوید بوهم یکی از فیزیکدانانی بود که تلاش کرد با ارائه دیدگاهی متفاوت، نوعی از مکانیک را برای توصیف دنیای کوانتومی ارائه دهد. تفسیر بوهمی یا نظریه بوهم-دوبروی، بر خلاف تفسیر استاندارد کوانتوم، تعین‌گراست و اصل عدم قطعیت در آن وجود ندارد. این نظریه پیش‌بینی‌های مشابهی با تفسیر کپنهاگی مکانیک کوانتوم دارد. اما، چرا تا کنون این نظریه جایگزین مکانیک کوانتوم استاندارد نشده است؟

🔴 دکتر زابینه هوسنفلدر، فیزیکدان آلمانی در این ویدئو درباره مکانیک بوهمی توضیح می‌دهد.#QC27

💻 تولید محتوا توسط مجله علم روز

🌀 @QuantCamp | کمپین کوانتوم
Please open Telegram to view this post
VIEW IN TELEGRAM
‍ ‍🧬 تداخل سنج چیست و چرا در فیزیک مهم هست؟

نام تداخل سنج را همیشه شنیده اید ولی آیا به آن فکر کردید که این تداخل سنج چیست و چه کاربردی دارد؟ تابحال در آزمایشات بسیاری از تداخل سنج استفاده شده هست و کمک زیادی به پیشرفت علم کرده است. ولی قبل از هر چیز بیاییم به طرز کار تداخل و تداخل سنج بپردازیم. بعد اینکه چرا اینقدر در دنیای علم مهم است.

📌 تداخل سنج
ابزاری برای تقسیم باریکۀ نور به دو یا چند باریکه و بازترکیب آنها برای ایجاد تداخل، همچنین به دانش ترکیب دو یا چند موج نیز گفته می‌شود. ما دو نوع تداخل به نام های تداخل سازنده و تداخل ویرانگر داریم. در تداخل سازنده دو موج که به همدیگر میرسند دره و قله ها منطبق و هم راستای (هم فرکانس) یکدیگر بوده و موجی قوی تر از قبل را ایجاد می‌کنند. در تداخل ویرانگر دره و قله برهم منطبق نبوده و زمانی که به هم می‌رسند باعث تضعیف یکدیگر می‌شوند.

📌برخی انواع تداخل‌سنج
1)تداخل سنج فابری-پرو
تداخل سنجی است که از بازتاب های متعدد بین دو آینه موازی برای ایجاد الگوی تداخل استفاده می کند.
2)تداخل سنج ماخ-زندر
از انواع تداخل سنج مایکلسون است که از تقسیم کننده های پرتو و آینه برای شکافتن و ترکیب مجدد پرتو نور استفاده می کند.
3)تداخل سنج مایکلسون
یک تنظیم پیچیده است که از آینه ها برای تقسیم یک پرتو نور به دو پرتو عمود بر هم استفاده می کند.
4) تداخل سنج واتسون
از یک تقسیم کننده پرتو تشکیل شده است و تغییر فاصله بین سطح نمونه و تصویر آینه مرجع ایجاد حاشیه های تداخلی می کند.

📌دسته بندی تداخل سنج ها
🔺تداخل‌سنج‌های تقسیم دامنه
فرض کنید که یک موج نوری از یک فیلتر عبور کند که بخشی از نور عبور و بخشی دیگر منعکس می‌شود البته دامنه هر دو موج عبوری و منعکس شده از موج اصلی کمتر خواهد بود.
مثال تداخل سنج مایکسون
🔺تداخل‌سنج‌های تقسیم جبهه موج
در این تداخل جبهه اولیه موج شکافته شده و جبهه دوم موج به وجود می‌آید و جبهه ثانویه نیز با هم تداخل کرده و نقش فریزهای نوری را به وجود می‌آورد.
مثال آزمایش یانگ

اما چه چیزی تداخل سنج ها را حائز اهمیت می‌کند؟
تداخل سنج ها کاربردهایی در زمینه‌های اخترشناسی، اندازه‌گیری، فیزیک نور، فیزیک هسته‌ای، فیزیک ذرات، فیزیک پلاسما، فیبر نوری، زمین‌شناسی، زلزله‌شناسی، اقیانوس‌سنجی، مکانیک کوانتومی و سنجش از راه دور دارند. و در روش هایی برای اندازه گیری فواصل بین ستاره ها، تشخیص امواج گرانشی، آزمایش صافی سطوح و تعیین ضریب شکست مواد مورد استفاده قرار میگیرد که همین موارد تداخل سنجی را بسیار حائز اهمیت کرده و نمیشه بدون آن کاری برای پیشرفت علم از پیش برد. #QC28

💻 تولید محتوا توسط کانال فیزیک اندیشه

🌀 @QuantCamp | کمپین کوانتوم
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🧬 قانون جذب و فیزیک کوانتوم

متافیزیک یکی از زیرشاخه‌های اصلی علم فلسفه به شمار می‌رود و هدف از آن درک ماهیت وجودی جهان هستی است. از طرف دیگر، مکانیک کوانتومی یکی از زیرشاخه‌های فیزیک است و قادر به توصیف رفتار ذرات بنیادی سازنده جهان هستی است.

اما این موضوع که آیا ارتباطی بین این دو شاخه از علم وجود دارد یا خیر همواره مورد بحث و مناقشه بوده است. در این ویدیو به موضوع ارتباط بین قانون جذب و فیزیک کوانتوم پرداخته شده است و به برخی شبهات در این رابطه پاسخ داده شده است. #QC29

💻 تولید محتوا توسط دکتر حسین طالب

🌀 @QuantCamp | کمپین کوانتوم
Please open Telegram to view this post
VIEW IN TELEGRAM
🧬 پاکسازی تأخیری اطلاعات کوانتومی:
تأثیر آینده بر گذشته یا هماهنگی آینده و گذشته؟

یکی از ویژگی های عجیب در دنیای کوانتومی، رفتار موج-ذره است. طبق اصل مکملیت بور، اشیاء کوانتومی یا از خود خاصیت موجی بروز میدهند و یا خاصیت ذره ای. مثلا در آزمایش دوشکاف اگر یک دسته الکترون را به سمت شکاف ها شلیک کنیم، تا زمانی که ندانیم آن الکترون ها چه مسیری دارند و مکان آنها چیست خاصیت موجی فعال است. با برخورد موج به دو شکاف نیز طرح تداخل موجی را بر روی پرده مشاهده می کنیم. اما به محض اینکه در محل شکاف ها یک آشکارساز قرار دهیم تا متوجه شویم که الکترون ها از کدام شکاف عبور کردند، طرح موجی از بین رفته و خاصیت ذره ای فعال می شود. این حالت برای ذرات نور (فوتون) هم وجود دارد.

جان ویلر در سال ۱۹۷۸ آزمایش شگفت انگیزتری را طراحی کرد. او سعی داشت بفهمد که چه زمانی فوتون تصمیم میگیرد که موجی یا ذره ای رفتار کند. او به آزمایش دو شکاف یک لنز عدسی اضافه کرد که در جلوی شکاف ها قرار میگیرد. کار این عدسی متمرکز کردن نوری است که از هر شکاف عبور می کند. موج های عبوری از هردو شکاف ابتدا به سمت هم همگرا می شوند و در ادامه از هم جدا شده و هر یک مسیر جداگانه ای را طی می کنند(تصویر زیر). حال اگر پردۀ آشکارساز در خارج از کانون (جایی که مسیرها از هم متمایزند) قرار داشته باشد ما خاصیت ذره ای را مشاهده میکنیم. اما اگر پرده را درست در کانون قرار دهیم (به دلیل تداخل دو موج عبوری) خاصیت موجی پدید می آید.

نکتۀ شگفت انگیز اینجاست که وقتی قرار باشد نور خاصیت ذره ای داشته باشد پس فوتون باید مانند ذره فقط از یک شکاف عبور کرده باشد. اما وقتی قرار باشد که ما خاصیت موجی را ببینیم نور باید مانند موج از هر دو شکاف عبورکرده باشد و در نقطۀ کانون با هم تداخل کنند. حال اگر ما اجازه دهیم که نور ابتدا تصمیم خود را بگیرد و از دو شکاف عبور کند و آنوقت ما تصمیم بگیریم که پردۀ آشکار ساز را در کجا بگذاریم چه اتفاقی می افتد؟ آیا ممکن است که نور بخواهد موج باشد و آنوقت ما آشکارساز را در خارج از کانون عدسی بگذاریم؟ (در این صورت هم خاصیت موجی و هم خاصیت ذره ای اتفاق می افتد و اصل مکملیت نقض میشود) آزمایش های انجام شده نشان می دهد که پاسخ این سوال منفی است!

در این آزمایش نیز ما همواره یک نقاب از موج-ذره را مشاهده می کنیم، با این تفاوت که انتخاب نقاب وابسته به شرایط آزمایش در آینده است! گویی نوری که به سمت دو شکاف می آید از تصمیم آیندۀ ما دربارۀ محل قرار دادن پرده باخبر است و طبق آن تصمیم خود را میگیرد. اگر ما بخواهیم پرده را در کانون بگذاریم پس نور باید مانند موج از دو شکاف عبور کند و اگر بخواهیم خارج از کانون بگذاریم نور مجبور بوده مانند یک ذره تنها از یک شکاف رد شده باشد. بعد از این ایدۀ ویلر آزمایشات بسیار دقیق تر و پیچیده تری انجام شد که حاکی از صحت این امر دارد. حتی ویلر آزمایشاتی در ابعاد کیهان طراحی کرد تا نشان دهد این موضوع برای فوتون هایی که چند میلیون سال قبل، از لنز گرانشی کهکشان ها رد شده اند هم صادق است. علیرغم سکوت همیشکی کوانتوم کپنهاگی در پاسخ به این دسته آزمایشات، کوانتوم بوهمی توضیح زیبایی برای این پدیده دارد. #QC30

💻 تولید محتوا توسط Quantum problems

🌀 @QuantCamp | کمپین کوانتوم
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🧬 تفسیر چند جهانی از کوانتوم چه میگوید؟

مسئله اندازه گیری در کوانتوم باعث شده تا افراد بسیاری تلاش کنند برای حل این مسئله تعابیر و نظریات جایگزینی برای کوانتوم معرفی کنند.

👤 دیوید آلبرت، فیلسوف و فیزیکدان نظری، در اینباره و درباره تفسیر چند جهانی توضیح میدهد. #QC31

💻 تولید محتوا توسط کانال مبانی کوانتوم

🌀 @QuantCamp | کمپین کوانتوم
Please open Telegram to view this post
VIEW IN TELEGRAM
2025/06/30 07:38:07
Back to Top
HTML Embed Code: