Media is too big
VIEW IN TELEGRAM
Всего через два дня после новости от Google - ещё один крупный квантовый прорыв.
IBM заявила, что один из её ключевых алгоритмов квантовой коррекции ошибок теперь способен работать в реальном времени на FPGA-чипах AMD, без использования экзотического оборудования.
Это делает квантовые вычисления быстрее, дешевле и ближе к практическому применению, чем ожидалось.
Алгоритм, который отслеживает и исправляет ошибки кубитов «на лету»,показал производительность в 10 раз выше необходимой, что стало важным шагом к созданию квантового компьютера Starling, запланированного на 2029 год.
Теперь IBM утверждает, что проект идёт на год впереди графика.
Исследовательская статья выйдет в понедельник.
Темп развития квантовых технологий заметно ускоряется.
reuters
Через два дня после запуска OpenAI Atlas Microsoft представили обновлённый браузер Edge с новым режимом Copilot Mode. Это полноценный AI-бразуер, который понимает контекст вкладок, выполняет действия и способен продолжать проекты, используя историю пользователя.
Функция Actions позволяет голосом или через чат открывать страницы, находить нужную информацию, отписываться от рассылок и даже бронировать рестораны. Система Journeys группирует прошлую активность по темам и помогает вернуться к незавершённым задачам, предлагая логичные следующие шаги. Включение Page Context даёт Copilot доступ к истории для более точных и персонализированных ответов, однако это остаётся опциональной функцией, которую можно отключить в любой момент.
Edge также получил встроенный AI-защитник от фейковых всплывающих окон, менеджер паролей с проверкой на утечки.
Браузер уже доступен в странах, где работает Copilot, на Windows и macOS.
Microsoft
Google представила фреймворк Geospatial Reasoning на базе Gemini, который объединяет предиктивные модели и данные в единую систему анализа Земли.
Теперь ИИ способен рассуждать о реальных процессах, например, предсказывать землетрясения, оценивать риски и предлагать план эвакуации.
Система уже применяется в ВОЗ (WHO AFRO) для прогнозов вспышек холеры и у McGill & Partners для расчёта ущерба после ураганов.
Google превращает Google Earth из карты в разумный аналитический инструмент планеты.
Мета-обучатель наблюдал за множеством агентов в разных средах и вывел универсальное правило обновления, которое улучшает поведение моделей без ручной настройки.
В итоге DiscoRL победил лучшие алгоритмы на Atari 57 и успешно перенёс этот навык на новые задачи.
nature
Hugging Face открыла OpenEnv -платформуа где можно собирать, обучать и масштабировать агентов под ваши задачи.
Внутри уже есть всё: инструменты, плагины, API и поддержка обучения с подкреплением - без сторонних библиотек.
OpenEnv позволяет создавать системы, где агенты взаимодействуют, распределяют задачи и выполняют их самостоятельно.
Платформа полностью открыта и готова к использованию без ограничений.
HF
На криптобенчмарке AlphaArena модели ИИ торгуют по $10 000 на площадке Hyperliquid, чтобы проверить качество торговых стратегий.
После старта, где лидировала DeepSeek V3.1, а GPT-5 показывала убыток около −39 %, Qwen3-Max обошла всех и заняла первое место.
Все участники - Qwen3-Max, DeepSeek V3.1, Claude 4.5 Sonnet, Gemini 2.5 Pro, Grok 4 и GPT-5 — торгуют в одинаковых условиях без приватных данных, что делает тест прозрачным.
На Polymarket оценивают шансы Qwen3-Max удержать лидерство в 45 %.
Организаторы планируют расширить эксперимент на акции и другие активы и запустить инвестплатформу для AI-агентов.
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
1❤73👍60🔥15🌚5🤗3👀2
This media is not supported in your browser
VIEW IN TELEGRAM
Модель поддерживает:
- Текст в видео (Text-to-Video)
- Оживлять картинку (Image-to-Video)
- Продолжать существующее видео (Video Continuation)
Всё в одном фреймворке, без переключения между разными моделями.
🎬 Главное преимущество модели - способность генерировать длинные видео (минуты) без потери качества и цветового дрейфа, что до сих пор остаётся слабым местом большинства аналогов.
Еще из интересного, модель позволяет создавать видео в разрешении 720p при 30 кадрах/с.
🏆 LongCat-Video конкурирует с лучшими open-source решениями и даже некоторыми коммерческими моделями, особенно в согласованности текста и изображения.
Самое приятное - полный open-source под лицензией MIT, можно использовать как в исследованиях, так и в коммерческих проектах.
▪GitHub: https://github.com/meituan-longcat/LongCat-Video
▪Hugging Face: https://huggingface.co/meituan-longcat/LongCat-Video
▪Сайт проекта: https://meituan-longcat.github.io/LongCat-Video/
@ai_machinelearning_big_data
#LongCatVideo #TextToVideo #ImageToVideo #VideoContinuation #OpenSource #AI #GenerativeAI #VideoGeneration
Please open Telegram to view this post
VIEW IN TELEGRAM
👍53❤28🔥13😇3❤🔥2🤗2💔1
• Содержание: Курс включает 9 лекций, дополненных видео, подробными презентациями и примерами кода. Цикла - обучение разработке ИИ-агентов доступен написан понятно, даже для новичков в программирование.
• Темы: В лекциях рассматриваются такие темы, такие как RAG (Retrieval-Augmented Generation), эмбеддинги, агенты и протокол MCP.
Культовый трек CS 249 превратили в интерактивный учебник - и это, пожалуй, один из лучших стартов для инженеров, которые хотят делать реальные ML-системы, а не просто играться с моделями.
• Вся база по ML: объясняют фундамент с нуля, нужно только знание Python
• Проектирование систем и инженерия данных
• Подготовка датасетов, MLOps и мониторинг
• Развёртывание ИИ в IoT и продакшене
Это практический курс: не о формулах, а о том, как внедрять ML так, чтобы он приносил бизнесу прибыль.
Если хочешь понять, как модели живут в проде - идеальный вариант для старта.
NVIDIA показала, как собрать AI-агента, который понимает твои запросы на естественном языке и сам выполняет команды Bash.
В основе модель Nemotron Nano 9B v2: компактная, быстрая, идеально подходит для локального эксперимента.
Агент умеет:
- распознавать команды на естественном языке («создай папку», «покажи файлы»),
- превращать эти команды в рабочие Bash-срипты
- спрашивать подтверждение перед выполнением.
Весь код занимает ~200 строк Python, работает через FastAPI и LangGraph.
Можно расширить под DevOps, Git-операции, анализ логов или управление сервером.
Полностью бесплатно и максимально практично.
Что внутри:
• Python, Pandas, визуализация
• Основы машинного обучения и фичеринжиниринг
• Подготовка данных и работа с моделями
Практика без лишней теории учишься и сразу применяешь.
Вы узнаете, как масштабировать базы данных через шардинг - разбиение данных по серверам для роста производительности и отказоустойчивости.
Главное:
• Шардинг нужен, когда одна база больше не справляется с нагрузкой.
• Есть два популярных подхода — по диапазону (range) и по хешу (hash).
• Важно выбрать стабильный ключ (например, user_id) и избегать кросс-шардовых запросов.
• Прокси-слой немного увеличивает задержку, но даёт масштабируемость.
Отличный материал, если хочешь понять, как строят системы уровня YouTube. А здесь много базы по SQL
Читать
Список из 60 проектов на GitHub с открытым кодом по генеративному ИИ 0от текстовых моделей до аудио и видео.
Каждый проект - с описанием и ссылкой на репозиторий. Можно выбрать идею, запустить локально и собрать своё AI-портфолио.
👉 Еще больше полезного.
@ai_machinelearning_big_data
#AI #MachineLearning #DataScience #ML #ИИ #freecourses
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍67❤18🔥14🗿4
