Forwarded from Graph Machine Learning
Graph & Geometric ML in 2024: Where We Are and What’s Next
📣 Two new blog posts - a comprehensive review of Graph and Geometric ML in 2023 with predictions for 2024. Together with Michael Bronstein, we asked 30 academic and industrial experts about the most important things happened in their areas and open challenges to be solved.
1️⃣ Part I: https://towardsdatascience.com/graph-geometric-ml-in-2024-where-we-are-and-whats-next-part-i-theory-architectures-3af5d38376e1
2️⃣ Part II: https://medium.com/towards-data-science/graph-geometric-ml-in-2024-where-we-are-and-whats-next-part-ii-applications-1ed786f7bf63
Part I covers: theory of GNNs, new and exotic message passing, going beyong graphs (with Topology, Geometric Algebras, and PDEs), robustness, graph transformers, new datasets, community events, and, of course, top memes of 2023 (that’s what you are here for, right).
Part II covers applications in structural biology, materials science, Molecular Dynamics and ML potentials, geometric generative models on manifolds, Very Large Graphs, algorithmic reasoning, knowledge graph reasoning, LLMs + Graphs, cool GNN applications, and The Geometric Wall Street Bulletin 💸
New things this year:
- the industrial perspective on important problems in structural biology that are often overlooked by researchers;
- The Geometric Wall Street Bulletin prepared with Nathan Benaich, the author of the State of AI report
It was a huge community effort and we are very grateful to all our experts for their availability around winter holidays. Here is the slide with all the contributors, the best “thank you” would be to follow all of them on Twitter!
📣 Two new blog posts - a comprehensive review of Graph and Geometric ML in 2023 with predictions for 2024. Together with Michael Bronstein, we asked 30 academic and industrial experts about the most important things happened in their areas and open challenges to be solved.
1️⃣ Part I: https://towardsdatascience.com/graph-geometric-ml-in-2024-where-we-are-and-whats-next-part-i-theory-architectures-3af5d38376e1
2️⃣ Part II: https://medium.com/towards-data-science/graph-geometric-ml-in-2024-where-we-are-and-whats-next-part-ii-applications-1ed786f7bf63
Part I covers: theory of GNNs, new and exotic message passing, going beyong graphs (with Topology, Geometric Algebras, and PDEs), robustness, graph transformers, new datasets, community events, and, of course, top memes of 2023 (that’s what you are here for, right).
Part II covers applications in structural biology, materials science, Molecular Dynamics and ML potentials, geometric generative models on manifolds, Very Large Graphs, algorithmic reasoning, knowledge graph reasoning, LLMs + Graphs, cool GNN applications, and The Geometric Wall Street Bulletin 💸
New things this year:
- the industrial perspective on important problems in structural biology that are often overlooked by researchers;
- The Geometric Wall Street Bulletin prepared with Nathan Benaich, the author of the State of AI report
It was a huge community effort and we are very grateful to all our experts for their availability around winter holidays. Here is the slide with all the contributors, the best “thank you” would be to follow all of them on Twitter!
Навальный был крутым и сильным, и люди которые его поддерживают - крутые и сильные.
Forwarded from Timur Madzhidov
По хемоинформатике сейчас есть европейская магистратура (https://masterchemoinfo.u-strasbg.fr/). Но проживет ли она до момента поступления ребенка - это хороший вопрос. Пока можно за европейские деньги поступить даже из России. Матиас Рарей конечно хорош, но не единственный, даже в Германии. Хотя я в чём соглашусь: что из немецких специалистов он мне больше всех нравится.
Erasmus Mundus Joint Master - ChEMoinformatics+
Erasmus Mundus Joint Master - ChEMoinformatics+ - Unique in Europe
Forwarded from Агенты ИИ | AGI_and_RL
Ученые на месте?
Нашел интересный проект с ИИшкой для науки
https://www.air4.science/
https://github.com/divelab/AIRS
Внутри подразделы с реализациями работ по следующим направлениям
- OpenQM: AI for Quantum Mechanics
- OpenDFT: AI for Density Functional Theory
- OpenMol: AI for Small Molecules
- OpenProt: AI for Protein Science
- OpenMat: AI for Materials Science
- OpenMI: AI for Molecular Interactions
- OpenPDE: AI for Partial Differential Equations
Интересующимся рекомендую посмотреть, мб что полезное увидите
Нашел интересный проект с ИИшкой для науки
https://www.air4.science/
https://github.com/divelab/AIRS
Внутри подразделы с реализациями работ по следующим направлениям
- OpenQM: AI for Quantum Mechanics
- OpenDFT: AI for Density Functional Theory
- OpenMol: AI for Small Molecules
- OpenProt: AI for Protein Science
- OpenMat: AI for Materials Science
- OpenMI: AI for Molecular Interactions
- OpenPDE: AI for Partial Differential Equations
Интересующимся рекомендую посмотреть, мб что полезное увидите
This media is not supported in your browser
VIEW IN TELEGRAM
Ai music is here
[Verse]
In a world of circuits and screens
We push the boundaries of what's real
Computational chemistry, the ultimate dream
Bringing science to a whole new deal (woah-oh-oh)
[Verse 2]
Robots in lab coats, precision at hand
AI algorithms, guiding our command
Data mining, simulations so grand
Unlocking mysteries, we'll understand (yeah-yeah)
[Chorus]
Welcome to the future, where molecules collide
In virtual realms, where discoveries reside
No beakers, no test tubes, just code and design
In the realm of computation, we redefine
In a world of circuits and screens
We push the boundaries of what's real
Computational chemistry, the ultimate dream
Bringing science to a whole new deal (woah-oh-oh)
[Verse 2]
Robots in lab coats, precision at hand
AI algorithms, guiding our command
Data mining, simulations so grand
Unlocking mysteries, we'll understand (yeah-yeah)
[Chorus]
Welcome to the future, where molecules collide
In virtual realms, where discoveries reside
No beakers, no test tubes, just code and design
In the realm of computation, we redefine
Forwarded from Computational and Quantum Chemistry
GitHub
GitHub - weisscharlesj/SciCompforChemists: Scientific Computing for Chemists is a free text for teaching basic computing skills…
Scientific Computing for Chemists is a free text for teaching basic computing skills to chemists using Python, Jupyter notebooks, and the other Python packages. This text makes use of a variety of ...
Forwarded from я обучала одну модель
babe wake up leetcode for ML just dropped
https://www.deep-ml.com/
(жду когда добавят побольше задачек😎 )
https://www.deep-ml.com/
(жду когда добавят побольше задачек
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from epsilon correct
Вчера суд Массачусетса вынес решение отклонить иск Франчески Джино к Гарварду и коллективу DataColada, который раскрыл фальсификации в нескольких работах Франчески. Этот скандал с фальсификациями – самый громкий за последние несколько лет: Джино была одним из ведущих учёных-бихевиористов, её работы были классикой в области. Дополнительную перчинку придаёт скандалу название её книги, вышедшей за пару лет до разоблачения: "Rebel talent: Why it pays to break the rules at work and in life". Такая вот ирония судьбы. 🤔
Мне кажется решение довольно важным в контексте прецедентности: расследовать чужой фрод в исследованиях – можно и нужно, в науке должно быть больше разоблачений плохих методов и сомнительных практик. Один из моих любимых блогов по теме ведёт Лиор Пахтер, который знатно проезжался по сомнительно известному в узких кругах исследователю графов Альберту-Ласло Барабаши.
А в ваших областях существуют такие правдорубы? Приглашаю обсудить в комментариях.👀
Мне кажется решение довольно важным в контексте прецедентности: расследовать чужой фрод в исследованиях – можно и нужно, в науке должно быть больше разоблачений плохих методов и сомнительных практик. Один из моих любимых блогов по теме ведёт Лиор Пахтер, который знатно проезжался по сомнительно известному в узких кругах исследователю графов Альберту-Ласло Барабаши.
А в ваших областях существуют такие правдорубы? Приглашаю обсудить в комментариях.
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Vladimir Shitov
Я тут случайно выяснил, что у нас открыты позиции постдоков в вычислительной биологии, сингл-селл. Позицию пока не рекламили, поэтому есть шанс проконтактировать раньше всех. Особенность в том, что она на 5 лет: это крутая возможность спокойно поделать крутой рисёрч, а заодно и немецкий паспорт получить, если хочется
Очень умные люди вокруг, топовая лаба по методам анализа сингл-селла в мире, натуры и ML-конференции, расположение в большом, но спокойном Мюнхене. Если шарите в ML, интересуйтесь биологией и звучит актуально, подавайтесь: https://jobs.helmholtz-muenchen.de/jobposting/fff4a86d203a3190e66782d373aa4a056478786b0?ref=homepage
#вакансии
Очень умные люди вокруг, топовая лаба по методам анализа сингл-селла в мире, натуры и ML-конференции, расположение в большом, но спокойном Мюнхене. Если шарите в ML, интересуйтесь биологией и звучит актуально, подавайтесь: https://jobs.helmholtz-muenchen.de/jobposting/fff4a86d203a3190e66782d373aa4a056478786b0?ref=homepage
#вакансии
Forwarded from Молбиол, биоинформатика, life science
Более 50% ученых покидает науку в течение 10 лет после начала карьеры, из них более 1/3 в течение первых 5 лет после публикации статьи первым автором, причем для женщин эти показатели выше, чем для мужчин. Nature: https://www.nature.com/articles/d41586-024-03222-7
#карьера
#карьера
Nature
Nearly 50% of researchers quit science within a decade, huge study reveals
Nature - Twenty years of publishing data across many countries and disciplines show women are more likely than men to leave research.
Forwarded from Computational and Quantum Chemistry
#PhD
Dear colleagues,
The newly formed Semiconductors and Microelectronic systems (SAM) group at TU Berlin has 2 open PhD positions in Neuromorphic Computing and Hardware for Artificial Intelligence (AI). We’re seeking passionate, self-motivated, and creative researchers eager to design and develop novel materials and devices for bio-inspired sensing and computing.
Inspired by the biological brain, our group will work on nanoelectronic materials and devices that host an innovative hardware-based AI—**neuromorphic computing**. This approach aims to overcome the limitations of software-based AI, enhancing energy efficiency, miniaturization, privacy, and scalability.
The SAM group is led by Prof. Priyamvada Jadaun, Chair Professor of Electrical Engineering and Computer Sciences at TU Berlin. Prof. Jadaun also holds a Visiting Scholarship at the University of California, Berkeley, USA, and an Affiliate position at Lawrence Berkeley National Laboratory, USA.
Please forward this opportunity to interested candidates. Application deadline: November 18, 2024.
🔗 More details on positions:
1. https://tub.stellenticket.de/en/offers/188619/
2. https://tub.stellenticket.de/en/offers/188620/
🔗 More on the group:
1. https://pjadaun.com
2. https://www.tu.berlin/en/sam
Dear colleagues,
The newly formed Semiconductors and Microelectronic systems (SAM) group at TU Berlin has 2 open PhD positions in Neuromorphic Computing and Hardware for Artificial Intelligence (AI). We’re seeking passionate, self-motivated, and creative researchers eager to design and develop novel materials and devices for bio-inspired sensing and computing.
Inspired by the biological brain, our group will work on nanoelectronic materials and devices that host an innovative hardware-based AI—**neuromorphic computing**. This approach aims to overcome the limitations of software-based AI, enhancing energy efficiency, miniaturization, privacy, and scalability.
The SAM group is led by Prof. Priyamvada Jadaun, Chair Professor of Electrical Engineering and Computer Sciences at TU Berlin. Prof. Jadaun also holds a Visiting Scholarship at the University of California, Berkeley, USA, and an Affiliate position at Lawrence Berkeley National Laboratory, USA.
Please forward this opportunity to interested candidates. Application deadline: November 18, 2024.
🔗 More details on positions:
1. https://tub.stellenticket.de/en/offers/188619/
2. https://tub.stellenticket.de/en/offers/188620/
🔗 More on the group:
1. https://pjadaun.com
2. https://www.tu.berlin/en/sam
Forwarded from Computational and Quantum Chemistry
🚨 PhD Position in Machine Learning for Orbital-Free Density Functional Theory 🚨
📍 Heidelberg University, Germany
The Institute for Theoretical Physics (ITP) and the Interdisciplinary Center for Scientific Computing (IWR) invite applications for a PhD position in physics, focusing on orbital-free density functional theory (OF-DFT) using machine-learned functionals.
🔬 Research Focus:
Orbital-free density functional theory offers computational accuracy comparable to coupled-cluster methods but at significantly lower computational cost. Currently, precise density functionals are limited, especially for open-shell systems. This project will implement and extend an existing codebase using machine learning techniques to develop high-quality functionals for open-shell systems.
👩💻 Candidate Profile:
- Background in Physics, Chemistry, or Computer Science
- Familiarity with condensed matter physics or theoretical chemistry
- Strong programming skills (Python, C, and Torch preferred)
- Motivation for collaborative, interdisciplinary research
👥 Supervisors:
- Prof. Maurits W. Haverkort (ITP)
- Prof. Fred Hamprecht (IWR)
📧 Apply by: April 30, 2025
Send applications to:
👉 [email protected]
Don't miss this exciting research opportunity!
#PhD #MachineLearning #Physics #Chemistry #DensityFunctionalTheory #OFDFT #HeidelbergUniversity #ResearchOpportunity
📍 Heidelberg University, Germany
The Institute for Theoretical Physics (ITP) and the Interdisciplinary Center for Scientific Computing (IWR) invite applications for a PhD position in physics, focusing on orbital-free density functional theory (OF-DFT) using machine-learned functionals.
🔬 Research Focus:
Orbital-free density functional theory offers computational accuracy comparable to coupled-cluster methods but at significantly lower computational cost. Currently, precise density functionals are limited, especially for open-shell systems. This project will implement and extend an existing codebase using machine learning techniques to develop high-quality functionals for open-shell systems.
👩💻 Candidate Profile:
- Background in Physics, Chemistry, or Computer Science
- Familiarity with condensed matter physics or theoretical chemistry
- Strong programming skills (Python, C, and Torch preferred)
- Motivation for collaborative, interdisciplinary research
👥 Supervisors:
- Prof. Maurits W. Haverkort (ITP)
- Prof. Fred Hamprecht (IWR)
📧 Apply by: April 30, 2025
Send applications to:
👉 [email protected]
Don't miss this exciting research opportunity!
#PhD #MachineLearning #Physics #Chemistry #DensityFunctionalTheory #OFDFT #HeidelbergUniversity #ResearchOpportunity