Алгебраические типы данных и Python
Возможно, кто-то из читателей, увидев заголовок этой статьи, подумает что-нибудь вроде:
"Что?! Алгебраические типы данных?! Это же что-то из мира функциональных языков программирования. Python?! Ну нет... Где Python со своей динамической утиной типизацией, а где типы данных, и уж тем более алгебраические..."
[ Статья ]
Возможно, кто-то из читателей, увидев заголовок этой статьи, подумает что-нибудь вроде:
"Что?! Алгебраические типы данных?! Это же что-то из мира функциональных языков программирования. Python?! Ну нет... Где Python со своей динамической утиной типизацией, а где типы данных, и уж тем более алгебраические..."
[ Статья ]
Telegraph
Алгебраические типы данных и Python
Что-то в таком духе. Но, на самом деле, в Python есть своя система типов, кроме того Python считается языком со строгой типизацией, а благодаря mypy и аннотациям, корректность используемых типов может быть проверена статически без непосредственного запуска…
Знакомство со стековыми графами
Стековые графы позволяют генерировать данные о навигации по стеку для конкретного репозитория, не требуя при этом какого-либо участия в конфигурировании со стороны владельца репозитория и не вмешиваясь в процесс сборки или другие задания, связанные с непрерывной интеграцией. В этой статье будет подробно рассказано, как работают стековые графы, и как с их помощью достигаются такие результаты.
Статья
Стековые графы позволяют генерировать данные о навигации по стеку для конкретного репозитория, не требуя при этом какого-либо участия в конфигурировании со стороны владельца репозитория и не вмешиваясь в процесс сборки или другие задания, связанные с непрерывной интеграцией. В этой статье будет подробно рассказано, как работают стековые графы, и как с их помощью достигаются такие результаты.
Статья
Сделай то, сделай это, сделай сам
Многим приходилось сталкиваться с необходимостью анализа большого количества данных при помощи Python по запросам начальства или коллег. Однотипные запросы поступают с определенной периодичностью, и не составляет труда подставить новые данные в свой код и провести анализ. Но иногда из-за определенной нагрузки не всегда хочется заниматься таким анализом. Намного проще сделать скрипт с графическим интерфейсом, чтобы сам заказчик для анализа данных мог нажать пару кнопок и получить желаемый результат. Тем более, можно изначально вложить в интерфейс столько «хотелок» заказчика для анализа, сколько будет душе угодно.
Покажу вам, как достичь желаемого на примере библиотеки для Python PySimpleGUI.
Статья
Многим приходилось сталкиваться с необходимостью анализа большого количества данных при помощи Python по запросам начальства или коллег. Однотипные запросы поступают с определенной периодичностью, и не составляет труда подставить новые данные в свой код и провести анализ. Но иногда из-за определенной нагрузки не всегда хочется заниматься таким анализом. Намного проще сделать скрипт с графическим интерфейсом, чтобы сам заказчик для анализа данных мог нажать пару кнопок и получить желаемый результат. Тем более, можно изначально вложить в интерфейс столько «хотелок» заказчика для анализа, сколько будет душе угодно.
Покажу вам, как достичь желаемого на примере библиотеки для Python PySimpleGUI.
Статья
Создание таблицы субъектов РФ в формате Geography T-SQL (SQL Server)
[ Статья ]
[ Статья ]
Telegraph
Создание таблицы субъектов РФ в формате Geography T-SQL (SQL Server)
В процессе подготовки инструмента для автоматического определения субъекта РФ по точке (тип данных Point) потребовалась таблица вида "Субъект РФ" - "geography::Object". Предыстория: есть большой автопарк (>1000 ТС), который отправляет свои координаты на сервер…
Перегон картинок из Pillow в NumPy/OpenCV всего за два копирования памяти
Стоп, что? В смысле «всего»? Разве преобразование из одного формата в другой нельзя сделать за одно копирование, а лучше вообще без копирования?
Да, это кажется безумием, но более привычные методы преобразования картинок работают в 1,5-2,5 раза медленнее (если нужен не read-only объект).
Статья
Стоп, что? В смысле «всего»? Разве преобразование из одного формата в другой нельзя сделать за одно копирование, а лучше вообще без копирования?
Да, это кажется безумием, но более привычные методы преобразования картинок работают в 1,5-2,5 раза медленнее (если нужен не read-only объект).
Статья
Работа с отсутствующими значениями в Pandas
Когда значение данных для объекта для определенного наблюдения не сохраняется, это означает, что эта функция имеет недостающее значение. Обычно отсутствующее значение в наборе данных отображается как вопросительный знак , ноль, NaN или просто пустая ячейка. Но как можно справиться с недостающими данными?
Статья
Когда значение данных для объекта для определенного наблюдения не сохраняется, это означает, что эта функция имеет недостающее значение. Обычно отсутствующее значение в наборе данных отображается как вопросительный знак , ноль, NaN или просто пустая ячейка. Но как можно справиться с недостающими данными?
Статья
SQL в DjangoORM
В большинстве приложений, с которыми мне приходилось иметь дело, при взаимодействии с БД не ограничиваются лишь драйвером, который позволяет выполнять сырые запросы. Для удобства и избавления от SQL-запросов внутри, например, Python-кода дополнительно используют библиотеки (Object Relational Mapper, ORM).
Статья
В большинстве приложений, с которыми мне приходилось иметь дело, при взаимодействии с БД не ограничиваются лишь драйвером, который позволяет выполнять сырые запросы. Для удобства и избавления от SQL-запросов внутри, например, Python-кода дополнительно используют библиотеки (Object Relational Mapper, ORM).
Статья
Обнаружение новизны изображений с помощью Python и библиотеки scikit-learn
В этой статье я расскажу, как с помощью библиотек scikit-learn, opencv, numpy, imutilsс выявить новизну входных изображений. Многие программы требуют наличия возможности решить, принадлежит ли новый объект тому же распределению, что и существующие объекты (это промежуточный результат), или его следует рассматривать как новизну. Часто эта возможность используется для очистки реальных наборов данных.
Статья
В этой статье я расскажу, как с помощью библиотек scikit-learn, opencv, numpy, imutilsс выявить новизну входных изображений. Многие программы требуют наличия возможности решить, принадлежит ли новый объект тому же распределению, что и существующие объекты (это промежуточный результат), или его следует рассматривать как новизну. Часто эта возможность используется для очистки реальных наборов данных.
Статья
Прогнозируем реальные вероятности
Может ли ваша модель прогнозировать реальные вероятности? На самом деле абсолютно точно это не может делать ни одна. Мы можем максимально приблизиться к реальным показателям, но для этого модель должна быть откалибрована. То есть скорректирована так, чтобы полученные показатели распределения вероятностей были как можно ближе к реальным.
Статья
Может ли ваша модель прогнозировать реальные вероятности? На самом деле абсолютно точно это не может делать ни одна. Мы можем максимально приблизиться к реальным показателям, но для этого модель должна быть откалибрована. То есть скорректирована так, чтобы полученные показатели распределения вероятностей были как можно ближе к реальным.
Статья