@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍2🥰1
Forwarded from Machinelearning
Исследователи из Мюнхенского университета предложили методику генерации изображений, основанную на байесовском выводе. Экспериментальная модель, которая получила название Bayesian Sample Inference (BSI), имитирует процесс постепенного уточнения данных: ее инференс начинается с «размытого» представления об изображении и последовательно корректируется с использованием шумовых измерений до финального результата. По заверениям авторов, их метод позволяет точнее воспроизводить распределение данных, чем классические решения на основе диффузии.
BSI-модель стартует с априорного распределения, где начальная точность намеренно задаётся низкой — это эквивалентно «размытой картинке», покрывающей всё множество возможных изображений. На каждом шаге генерации, предиктор, построенный на U-Net или ViT, анализирует текущий промежуточный «результат» и генерирует оценку соответствия относительно "идеального" изображения, который, в свою очередь, участвует в пересчете среднего значения и точности для следующего шага генерации.
Такой подход позволяет BSI-модели балансировать между имеющимися знаниями и новыми данными, избегая переобучения и сохраняя разнообразие генерации. Эксперименты выявили, что BSI сохраняет разнообразие сгенерированных образцов даже при малом числе шагов — это выгодно отличает её от аналогов, склонных к «повторяющимся» генерациям.
BSI напрямую сравнивали с диффузионными VDM- и EDM-моделями и BFNs. Оказалось, что BSI-архитектура не только включает BFNs как частный случай, но и превосходит их в тестах на правдоподобие. Например, на наборах CIFAR10 и ImageNet BSI показала лучшие результаты, достигнув 2.64 (BFNs) и 3.22 (VDM) бит на измерение соответственно, но не смогла превзойти модели с точным расчетом правдоподобия (i-DODE).
Эта новая потенциально методика может стать гейм-чейнджером для генерации изображений.
@ai_machinelearning_big_data
#AI #ML #Bayesian #GenAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3🔥3
This media is not supported in your browser
VIEW IN TELEGRAM
🌍✨ Учебное пособие по Leafmap
Из него вы узнаете, как без труда наносить на график десятки тысяч точек с помощью пользовательских стилей, используя всего несколько строк кода!
🎥 Смотреть: https://youtu.be/F3NzZMIhff4
📓 Код: https://leafmap.org/notebooks/104_point_style
#geospatial #leafmap #mapping
Из него вы узнаете, как без труда наносить на график десятки тысяч точек с помощью пользовательских стилей, используя всего несколько строк кода!
🎥 Смотреть: https://youtu.be/F3NzZMIhff4
📓 Код: https://leafmap.org/notebooks/104_point_style
#geospatial #leafmap #mapping
👍4❤1🔥1😁1
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3🥰1
Forwarded from Machinelearning
⚡️ EasyR1 – эффективный и масштабируемый фреймворк для обучения с подкреплением (RL) с поддержкой мультимодальных данных.
Чем интересен EasyR1?
EasyR1 сочетает в себе алгоритм GRPO, продемонстрированный в DeepSeek R1, и расширение системы veRL для поддержки vision-language моделей, таких как Qwen2.5-VL.
Уже после 30 шагов обучения фреймворк показал прирост производительности на 5% в экспериментах на тестовом наборе Geometry3k.
Это делает его привлекательным инструментом для исследователей и разработчиков, работающих с задачами, где объединяются визуальные и текстовые данные.
Фреймворк спроектирован так, чтобы быть масштабируемым и легко интегрироваться с различными алгоритмами RL, что открывает широкие возможности для дальнейших исследований.
Ожидайте будущих обновлений – в них планируется интеграция дополнительных алгоритмов RL и новых архитектур VLM.
▪ Github
@ai_machinelearning_big_data
#EasyR1 #opensource #GRPO #VLM
Чем интересен EasyR1?
EasyR1 сочетает в себе алгоритм GRPO, продемонстрированный в DeepSeek R1, и расширение системы veRL для поддержки vision-language моделей, таких как Qwen2.5-VL.
Уже после 30 шагов обучения фреймворк показал прирост производительности на 5% в экспериментах на тестовом наборе Geometry3k.
Это делает его привлекательным инструментом для исследователей и разработчиков, работающих с задачами, где объединяются визуальные и текстовые данные.
Фреймворк спроектирован так, чтобы быть масштабируемым и легко интегрироваться с различными алгоритмами RL, что открывает широкие возможности для дальнейших исследований.
Ожидайте будущих обновлений – в них планируется интеграция дополнительных алгоритмов RL и новых архитектур VLM.
▪ Github
@ai_machinelearning_big_data
#EasyR1 #opensource #GRPO #VLM
👍3
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤1
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
🔥Google сделали Gemini Code Assist бесплатным для всех стран.
🌐 Поддержка всех языков программирования в открытом доступе
💡 Окно контекста 128K токенов
https://blog.google/technology/developers/gemini-code-assist-free/
@ai_machinelearning_big_data
🌐 Поддержка всех языков программирования в открытом доступе
💡 Окно контекста 128K токенов
https://blog.google/technology/developers/gemini-code-assist-free/
@ai_machinelearning_big_data
❤5🔥3👍2🤔1
OpenAI расширили доступ к DeepResearch для пользователей с подпиской до $200, теперь они могут использовать 10 запросов в месяц.
Пользователи с Pro подпиской также получат небольшое улучшение — теперь они могут делать 120 запросов вместо 100.
Кроме того, внесены и другие улучшения:
- Ответы могут включать изображения, обнаруженные в ходе исследования.
- Обновлённая обработка файлов упрощает использование загруженных PDF или Excel файлов в качестве контекста.
Эти изменения направлены на повышение эффективности работы с информацией и улучшение пользовательского опыта.
https://x.com/OpenAI/status/1894454194943529433
Пользователи с Pro подпиской также получат небольшое улучшение — теперь они могут делать 120 запросов вместо 100.
Кроме того, внесены и другие улучшения:
- Ответы могут включать изображения, обнаруженные в ходе исследования.
- Обновлённая обработка файлов упрощает использование загруженных PDF или Excel файлов в качестве контекста.
Эти изменения направлены на повышение эффективности работы с информацией и улучшение пользовательского опыта.
https://x.com/OpenAI/status/1894454194943529433
😁7❤3🔥2🤯2👍1
Forwarded from Machinelearning
С 26 февраля Advanced Voice на базе GPT-4o mini доступна бесплатным пользователям ChatGPT на всех платформах.
Free tier имеет ежедневные ограничения на использование входных и выходных аудиоданных. Пользователи ChatGPT Plus могут использовать полную версию Advanced Voice на основе GPT-4o с дневным лимитом, который в 5 раз превышает лимит бесплатной версии, и могут продолжать использовать функции видео и демонстрации экрана в расширенном голосовом режиме. Подписчики ChatGPT Pro не имеют дневного лимита.
OpenAI в X
Microsoft открыла всем пользователям бесплатный доступ к функциям «Think Deeper» и голосовому управлению Copilot, а также снимет предыдущие ограничения на использование для бесплатных пользователей. Это означает, что пользователи могут вести неограниченное количество "бесед" и голосовых взаимодействий с Copilot. Think Deeper работает на основе модели логического вывода OpenAI o1, которую Microsoft сделала бесплатной в прошлом месяце.
microsoft.com
Octave, TTS-модель, анонсированная в конце декабря 2024 года, стала доступной через web и API. Модель умеет не просто "читать" слова, а понимает их смысл в контексте. Octave способна отыгрывать персонажей, генерировать голоса по запросу и изменять эмоциональную окраску и стиль речи.
Благодаря функции Voice Design, Octave может создать любой ИИ-голос по текстовому описанию. От "терпеливого, чуткого консультанта с голосом ASMR" до "средневекового рыцаря" – Octave воплотит любую фантазию. В ближайшем будущем планируется запуск функции клонирования голоса.
В ходе слепого сравнительного исследования, Octave превзошла систему ElevenLabs Voice Design по качеству звука (71,6%), естественности (51,7%) и соответствию голоса заданному описанию (57,7%).
hume.ai
DeepSeek объявил о введении скидок до 75% на использование своих AI-моделей в непиковые часы. Это решение может оказать давление на конкурентов как в Китае, так и за рубежом, вынуждая их пересматривать свои ценовые стратегии. Согласно информации на сайте компании, в период с 16:30 до 00:30 по Гринвичу стоимость использования API DeepSeek будет значительно снижена. Для моделей R1 и V3 скидки составят 75% и 50% соответственно.
reuters.com
Samsung выпустит первую потребительскую серию PCIe 5.0 SSD 9100 Pro в марте. Впервые среди NVMe SSD от Samsung в линейке будет модель с 8 ТБ (ожидается, что будет доступен во второй половине 2025 года). В спецификации M.2 предусмотрены две дополнительные версии с радиатором или без него, с тремя конфигурациями: 1 ТБ (199,99 долл. США), 2 ТБ (299,99 долл. США) и 4 ТБ (549,99 долл. США).
Серия 9100 Pro демонстрирует значительные улучшения: в ней используется специализированный контроллер и флэш-память V-NAND TLC 7-го поколения. В синтетических тестах скорости последовательного чтения и записи достигают 14,8 ГБ/с и 13,4 ГБ/с, что вдвое больше, чем у предыдущего поколения 980 Pro и примерно на 2–3 ГБ/с быстрее, чем у конкурирующих продуктов, а производительность случайного чтения и записи улучшена до 2200 тыс./2600 тыс. IOPS, что более чем 2х превышает показатели PCIe 4.0.
news.samsung.com
Hf
@ai_machinelearning_big_data
#news #ai #ml #microsoft #openai #DeepSeek
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍1🔥1
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1👍1
Forwarded from Machinelearning
MatAnyOne - memory-based модель для видео-маттинга, разработанная для получения стабильных и точных результатов в сценариях реального постпродакшена. В отличие от методов, требующих дополнительного аннотирования, MatAnyOne использует только кадры видео и маску сегментации целевого объекта, определенную на первом кадре.
MatAnyOne оперирует регионально-адаптивным слиянием памяти, где области с небольшими изменениями сохраняют данные из предыдущего кадра, а области с большими изменениями больше полагаются на информацию из текущего кадра. Такая техника позволяет MatAnyOne эффективно отслеживать целевой объект, даже в сложных и неоднозначных сценах, сохраняя при этом четкие границы и целые части переднего плана.
При создании модели применялась уникальная стратегия обучения, которая опирается на данные сегментации для улучшения стабильности выделения объекта. В отличие от распространенных практик, MatAnyOne использует эти данные непосредственно в той же ветви, что и данные маски. Это достигается путем применения регионально-специфичных потерь: пиксельная потеря для основных областей и улучшенная DDC-потеря для граничных областей.
Для обучения был специально создан кастомный набор данных VM800, который вдвое больше, разнообразнее и качественнее, чем VideoMatte240K, что по итогу значительно улучшило надежность обучения объектному выделению на видео.
В тестах MatAnyOne показал высокие результаты по сравнению с существующими методами как на синтетических, так и на реальных видео:
⚠️ Согласно обсуждению в
issues
репозитория, MatAnyOne способен работать локально от 4 GB VRAM и выше с видео небольшой длительности. Реальных технических критериев разработчик не опубликовал.# Clone Repo
git clone https://github.com/pq-yang/MatAnyone
cd MatAnyone
# Create Conda env and install dependencies
conda create -n matanyone python=3.8 -y
conda activate matanyone
pip install -e .
# Install python dependencies for gradio
pip3 install -r hugging_face/requirements.txt
# Launch the demo
python app.py
@ai_machinelearning_big_data
#AI #ML #VideoMatte #MatAnyone
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👍1🔥1🥰1
Media is too big
VIEW IN TELEGRAM
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥9❤2👏2
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤1🤬1
✔ Разбор задач с собеседований по статистике для Дата Саентистов
В современных собеседованиях на позицию Data Scientist кандидатов проверяют не только практические навыки программирования, но и глубокое понимание статистических методов.
В данной статье рассмотрены часто встречающиеся задач, которые могут встретиться на интервью. Разберём каждую задачу с теоретической точки зрения, а также продемонстрируем пример кода на Python.
📌 Читать
@machinelearning_ru
В современных собеседованиях на позицию Data Scientist кандидатов проверяют не только практические навыки программирования, но и глубокое понимание статистических методов.
В данной статье рассмотрены часто встречающиеся задач, которые могут встретиться на интервью. Разберём каждую задачу с теоретической точки зрения, а также продемонстрируем пример кода на Python.
📌 Читать
@machinelearning_ru
👍6❤2🔥2
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤1🔥1😢1