▪️Github
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3❤2🔥2
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7❤4🔥2
Media is too big
VIEW IN TELEGRAM
⚡️ The OG: Отец нейронных сетей Уоррен Маккаллох рассказывает о разуме, мозге, мыслящих и чувствующих машинах
Невролог, который много лет назад помогал создавать это направление и видел будущее компьютеров и искусственного интеллекта.
В первой части этого фильма, снятого в 1962 году, демонстрируются возможности компьютерного "искусственного интеллекта", намного превосходящие возможности любого человеческого мозга. Во второй части показаны эксперименты по электронному воспроизведению некоторых сенсорных восприятий.
@machinelearning_ru
Невролог, который много лет назад помогал создавать это направление и видел будущее компьютеров и искусственного интеллекта.
В первой части этого фильма, снятого в 1962 году, демонстрируются возможности компьютерного "искусственного интеллекта", намного превосходящие возможности любого человеческого мозга. Во второй части показаны эксперименты по электронному воспроизведению некоторых сенсорных восприятий.
@machinelearning_ru
👍6❤3🔥3
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6❤4👎1
Google работает над технологией ИИ под рабочим названием Project Jarvis, которая позволит ИИ автономно управлять веб-браузером для выполнения задач поиска информации и совершения покупок.
Google планирует представить Project Jarvis в декабре, одновременно с выпуском новой большой языковой модели Gemini. Разработка Google направлена на то, чтобы ИИ мог напрямую взаимодействовать с компьютером или браузером пользователя.
Примечательно, что конкурент Google по технологиям поиска, Microsoft, тоже работает над аналогичной технологией.
📌 finance.yahoo.com
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4❤2👍2😱2
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2👍2
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤2🔥2
Spark, продукт лаборатории GitHub Next, позволяет создавать прототипы приложений с помощью чат-подобного интерфейса. В основе Spark лежат репозиторий GitHub, GitHub Actions и база данных Microsoft Azure CosmosDB.
Spark может использовать любые веб-API, а пользователи могут выбирать между моделями Anthropic’s Claude Sonnet и OpenAI’s GPT. Также заявлена функция шэринга Spark-проектов с настраиваемыми правами доступа.
Открыта запись в waitlist. Подать заявку можно по ссылке.
githubnext.com
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5❤4🔥2
Медицина, промышленность, образование — это только некоторые из областей, где могут быть полезны исследования в области машинного обучения. Яндекс в шестой раз отметил авторов самых перспективных исследований премией Yandex ML Prize. Рассказываем о самых интересных открытиях.
Иван Бутаков (МФТИ, Сколтех) разработал новый метод, который позволил лучше понять процессы обучения нейросетей. Что это даёт? Теперь можно “регулировать” память искусственного интеллекта и настраивать его “запоминание” или “забывание” информации.
Артем Лыков (Сколтех) и его команда первые в мире представили универсальную когнитивную систему, адаптируемую для различных типов роботов. В числе его разработок — робособака, способная понимать голосовые команды, взаимодействовать с окружающими предметами и воспринимать визуальную информацию. Всё это может стать основной для создания «роя умных роботов».
Елена Тутубалина (КФУ, AIRI) ведет работы в области анализа естественного языка, биомедицинских и химических данных. Ее исследования могут ускорить создание лекарств — от идеи до клинических испытаний.
Помимо самой премии, лауреаты также получат доступ к Яндекс 360 и грант на на использование Yandex Cloud. Эти ресурсы помогут им проводить объёмные вычисления и анализировать данные.
@machinelearning_ru
Иван Бутаков (МФТИ, Сколтех) разработал новый метод, который позволил лучше понять процессы обучения нейросетей. Что это даёт? Теперь можно “регулировать” память искусственного интеллекта и настраивать его “запоминание” или “забывание” информации.
Артем Лыков (Сколтех) и его команда первые в мире представили универсальную когнитивную систему, адаптируемую для различных типов роботов. В числе его разработок — робособака, способная понимать голосовые команды, взаимодействовать с окружающими предметами и воспринимать визуальную информацию. Всё это может стать основной для создания «роя умных роботов».
Елена Тутубалина (КФУ, AIRI) ведет работы в области анализа естественного языка, биомедицинских и химических данных. Ее исследования могут ускорить создание лекарств — от идеи до клинических испытаний.
Помимо самой премии, лауреаты также получат доступ к Яндекс 360 и грант на на использование Yandex Cloud. Эти ресурсы помогут им проводить объёмные вычисления и анализировать данные.
@machinelearning_ru
❤2
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6🔥2
Forwarded from Machinelearning
D-FINE - детектор объектов в режиме реального времени, который предлагает улучшение регрессии bounding box в моделях DETR . D-FINE обладает высокой точностью локализации, определяя регрессию рамок как процесс итеративного уточнения распределений вероятностей.
D-FINE состоит из двух компонентов:
FDR преобразует процесс регрессии из предсказания фиксированных координат в итеративное уточнение распределений вероятностей. Эта техника дает более детальное промежуточное представление, что повышает точность локализации.
GO-LSD - двунаправленная стратегия оптимизации, которая передает знания о локализации из уточненных распределений в более ранние слои модели через самодистилляцию.
Старшие версии D-FINE-L и D-FINE-X достигают 54,0% и 55,8% AP на наборе данных COCO соответственно, работая со скоростью 124 и 78 FPS на GPU NVIDIA T4.
При предварительном обучении на Objects365 D-FINE-L и D-FINE-X показывают 57,1% и 59,3% AP, что выше всех существующих детекторов реального времени.
Разработчики D-FINE предлагают несколько предобученных моделей на датасетах Objects365 и COCO под разные задачи и мощности. Все модели поддерживают инференс на изображениях и видео с использованием ONNX Runtime, TensorRT и PyTorch:
D-FINE предоставляет инструменты для обучения, бенчмаркинга, визуализации с помощью FiftyOne и инструкции по организации наборов данных.
# Create env via conda
conda create -n dfine python=3.11.9
conda activate dfine
# Install requirements for inference
pip install -r tools/inference/requirements.txt
# Install ONNX
pip install onnx onnxsim
# Choose a model
export model=l # s, m, x
# Inference
python tools/inference/onnx_inf.py --onnx model.onnx --input image.jpg # video.mp4
@ai_machinelearning_big_data
#AI #ML #DETR #DFine #Detection
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5❤2
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤2🔥1👏1
This media is not supported in your browser
VIEW IN TELEGRAM
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7❤2
Forwarded from Искусственный интеллект. Высокие технологии
@vistehno
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4❤2🔥2
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6😁2❤1
Forwarded from Machinelearning
Cosmos Tokenizer - набор токенизаторов для изображений и видео с высокой степенью сжатия при сохранении качества реконструкции, представленный на конференции Conference for Robot Learning 2024, которая проходит до 9 ноября в Мюнхене.
Cosmos Tokenizer предлагает непрерывную (C) и дискретную (D) токенизацию для изображений (I) и видео (V), что формирует 4 типа токенизаторов: CI, DI, CV и DV.
Cosmos Tokenizer имеет внушительные показатели сжатия: 8x или 16x для пространственного сжатия изображений и 4x или 8x для временного сжатия видео, при этом работает до 12 раз быстрее, чем другие современные токенизаторы, сохраняя при этом высокое качество изображения.
Такая эффективность обусловлена легкой временно-причинной архитектурой, использующей причинную временную свертку и слои внимания. Этот дизайн архитектуры гарантирует, что обработка каждого кадра зависит только от текущих и прошлых кадров, сохраняя временную согласованность видео.
Для оценки Cosmos Tokenizer использовались стандартные наборы данных и новый набор данных TokenBench, созданный NVIDIA. Cosmos Tokenizer сравнивался с современными токенизаторами с использованием метрик PSNR, SSIM, rFID и rFVD.
Результаты тестирования показали превосходство Cosmos Tokenizer над существующими методами как по качеству реконструкции, так и по скорости работы.
@ai_machinelearning_big_data
#AI #ML #NVIDIA #Tokenizer #Cosmos
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4👍2❤1🥰1
@machinelearning_ru
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5🔥5❤3