Forwarded from Machinelearning
Llama 3.1 - набор предварительно обученных и настроенных по инструкции генеративных моделей размером 8B, 70B и 405B (текст в тексте/текст на выходе). Модели Llama 3.1 с инструкциями (8B, 70B, 405B) оптимизированы для использования в многоязычных диалогах и превосходят многие из доступных моделей с открытым исходным кодом и закрытых моделей для чатов в распространенных отраслевых тестах.
Llama 3.1 - это авторегрессивная языковая модель, использующая оптимизированную архитектуру трансформаторов. В настроенных версиях используются контролируемая тонкая настройка (SFT) и обучение с подкреплением и обратной связью (RLHF) для согласования с предпочтениями человека в отношении полезности и безопасности.
Pretrained:
Meta-Llama-3.1-8B
Meta-Llama-3.1-70B
Meta-Llama-3.1-405B
Meta-Llama-3.1-405B-MP16
Meta-Llama-3.1-405B-FP8
Fine-tuned:
Meta-Llama-3.1-8B-Instruct
Meta-Llama-3.1-70B-Instruct
Meta-Llama-3.1-405B-Instruct
Meta-Llama-3.1-405B-Instruct-MP16
Meta-Llama-3.1-405B-Instruct-FP8
Llama-Guard-3-8B
Llama-Guard-3-8B-INT8
Llama-Guard-2-8B
Llama-Guard-8B
Prompt-Guard-86M
Эти веса можно запустить только на нескольких нодах с использованием pipelined parallel инференса. Минимально требуется 2 ноды с 8 GPU.
@ai_machinelearning_big_data
#AI #Llama3.1 #ML #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
⚡️ Q-GaLore: алгоритм обучения и файнтюна LLM с экономией памяти.
Q-GaLore - набор методик, который значительно оптимизирует использование памяти при сохранении высокой производительности за счет техник, полученных в результате наблюдения за поведением стабилизации слоев и устойчивости матриц проекции к квантованию:
🟢 адаптивного обновления подпространств (увеличение интервала между операциями SVD и, как следствие, сокращение их числа на 60%);
🟢 квантовании весов и матриц в проекции (хранение весов модели в INT8, использовании 4-битных матриц проекции и применение стохастического округления для аппроксимации траектории обучения с высокой точностью)
🟢 применении метода fused backward operation в совокупности с 8-битным оптимизатором Adam.
Совокупность этих техник позволяет проводить полнопараметрическое обучение при меньших затратах памяти, например, обучение модели LLaMA-7B с нуля на одном NVIDIA RTX 4060 Ti с использованием всего 16 ГБ памяти.
▶️ Локальный запуск:
Пример конфига для претрейга LLaMa на с4 датасете
Пример конфига для претрейна LLaMA-7B на 16 GB VRAM
▪Лицензирование: Apache-2.0
▪Arxiv
▪Video from Open AGI Summit
▪Github [ Stars: 3.4K | Issues: 122 | Forks: 274]
@ai_machinelearning_big_data
#AI #FineTuning #LLM #QGalore #ML
Q-GaLore - набор методик, который значительно оптимизирует использование памяти при сохранении высокой производительности за счет техник, полученных в результате наблюдения за поведением стабилизации слоев и устойчивости матриц проекции к квантованию:
Совокупность этих техник позволяет проводить полнопараметрическое обучение при меньших затратах памяти, например, обучение модели LLaMA-7B с нуля на одном NVIDIA RTX 4060 Ti с использованием всего 16 ГБ памяти.
# # Install via conda
conda env create - f environment.yml
# or Install Q-GaLore optimizer and experiment dependencies
# install from pip
pip install q-galore-torch
# or install from source:
git clone https://github.com/VITA-Group/Q-GaLore.git
cd Q-GaLore
pip install -e
pip install -r exp_requirements.txt
Пример конфига для претрейга LLaMa на с4 датасете
Пример конфига для претрейна LLaMA-7B на 16 GB VRAM
▪Лицензирование: Apache-2.0
▪Arxiv
▪Video from Open AGI Summit
▪Github [ Stars: 3.4K | Issues: 122 | Forks: 274]
@ai_machinelearning_big_data
#AI #FineTuning #LLM #QGalore #ML
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Zamba2-2.7B - это гибридная модель, состоящая из блоков пространства состояний (state-space) и трансформеров. Она сохраняет качество инференса модели 3-4В плотности, требуя при этом вычислительных ресурсов на уровне модели плотностью 1-2B.
Такие характеристики были получены за счет использования блоков Mamba2, чередования блоков внимания в схеме "А-В-А-В" и применения LoRA projector для каждого общего MLP-блока.
Zamba2-2.7B использует токенизатор Mistral v0.1 и была предварительно обучена на 3T токенов текста и кода, полученных из открытых источников, включая датасет Zyda.
По завершению обучения, модель была подвергнута дополнительной фазе агрессивного снижения скорости обучения на смеси из 100B высококачественных токенов.
Согласно заверению создателей, Zamba2-2.7B достигает лучших результатов среди моделей аналогичного масштаба, таких как Gemma2-2.7B, StableLM-3B, OpenELM-3B и Phi2-2.7B.
⚠️ Внимание:
Эксплуатация модели доступна с использованием Zyphra's fork of transformers или с помощью кода из репозитория разработчиков модели.
# Сlone and install
git clone https://github.com/Zyphra/Zamba2.git
cd Zamba2
pip install -e
# Install core mamba dependencies
pip install -U mamba-ssm causal-conv1d
# Inference
from mamba_model import MambaModel
from mamba_config import MambaConfig
import torch
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("Zyphra/Zamba2-2.7B")
input_text = 'A funny prompt would be '
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")["input_ids"].transpose(0,1)
model = MambaModel.from_pretrained(model_name = "Zyphra/Zamba2-2.7B").cuda().half()
tokens_to_generate = 20
model.eval()
with torch.no_grad():
for _ in range(tokens_to_generate):
out = model(input_ids)
out_last = out[:, -1]
idx = torch.argmax(out_last)[None, None]
input_ids = torch.cat((input_ids, idx), dim=0)
input_ids = input_ids.transpose(0, 1)[0]
print(repr(tokenizer.decode(input_ids.cpu().numpy().tolist())))
@ai_machinelearning_big_data
#AI #ML #SLM #Mamba
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
https://github.com/stas00/ml-engineering/blob/master/compute/accelerator/amd/debug.md
А здесь большое руководству по устранению различных неполадок для NVIDIA https://github.com/stas00/ml-engineering/blob/master/compute/accelerator/nvidia/debug.md
@ai_machinelearning_big_data
#amd #NVIDIA #Troubleshooting
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
CogVideoX - обновление модели генерации текста в видео CogVideo, выпущенной в мае 2022 года.
Обновление до CogVideoX :
CogVideoX-2B: первая модель в серии CogVideoX, разработанная для генерации видео.
Для запуска требуется 18GB VRAM GPU (с использованием SAT) для инференса на одном графическом процессоре и 40GB для дообучения и файнтюна.
Модель поддерживает генерацию видео с разрешением 720x480, длительностью 6 секунд и частотой 8 кадров в секунду, с максимальной длиной текстового промпта в 226 токенов.
CogVideoX-5B: более плотная модель на 5B, доступна только для коммерческих целей по API.
При регистрации дают 25 млн токенов попробовать, но возможность регистрации по некитайским номерам сотовых операторов неизвестна.
Технические параметры CogVideoX-5B не публиковались.
CogVideoX обучалась на наборе данных из 35 миллионов видеоклипов, каждый из которых длительностью около шести секунд. Данные для обучения прошли фильтрацию на низкое качество.
CogVideoX использует 3D causal VAE для сжатия видеоданных как в пространственном, так и во временном отношении, тем самым сокращая длину последовательности по сравнению с традиционными методами.
Это помогает поддерживать непрерывность между кадрами, минимизируя мерцание в сгенерированных видео.
Модель объединяет Expert Transformer с адаптивным LayerNorm для синхронизации согласования между видео и текстовыми вхождениями.
Такая конструкция позволяет комплексно моделировать временные и пространственные измерения с использованием 3D full focus, оптимизируя обработку интенсивных движений в генерации.
Выделенный captioning pipeline для видео генерирует точные текстовые описания для кадров, улучшая семантическое понимание модели.
Эмпирические результаты тестов показывают, что CogVideoX превосходит существующие общедоступные модели в машинных и в человеческих оценках.
Перед запуском разработчики советуют сконвертировать текстовой промпт в формат, понятный CogVideoX-2B, так как она обучалась на длинных LLM-образных промптах, выполнив скрипт convert_demo.py.
По умолчанию, CogVideoX использует LLM GLM4, но его также можно заменить любой другой LLM, например GPT, Gemini и т.д.
Этот шаг не является обязательным, модель будет работать без ошибок, но более детальный промпт даст лучшие результаты генерации видео.
# Clone repository & install requirements:
git clone https://github.com/THUDM/CogVideo.git
pip install -r requirements.txt
cd inference
# For Linux and Windows run GradioUI
python gradio_web_demo.py
# For macOS with Apple Silicon use this (maybe 20x slower than RTX 4090)
PYTORCH_ENABLE_MPS_FALLBACK=1 python gradio_web_demo.py
@ai_machinelearning_big_data
#AI #VLM #ML #Text2Video #CogVideoX
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 AI VK HUB - тг канал от ML команд VK.
Здесь рассказывают про реальные практические кейсы команды VK, разбирают теорию, тестируют новые ML-модели (и LLM) и обсуждают актуальные статьи, которые точно не стоит пропускать.
Постов много, и они разные, но для себя выделил:
- подборка сервисов для инференса ML-моделей
- претрейн контентного видео-энкодера
- крутые дайджесты мл-инструментов и новостей
Подписывайтесь, потом сами себе спасибо скажете: @aihubvk
Здесь рассказывают про реальные практические кейсы команды VK, разбирают теорию, тестируют новые ML-модели (и LLM) и обсуждают актуальные статьи, которые точно не стоит пропускать.
Постов много, и они разные, но для себя выделил:
- подборка сервисов для инференса ML-моделей
- претрейн контентного видео-энкодера
- крутые дайджесты мл-инструментов и новостей
Подписывайтесь, потом сами себе спасибо скажете: @aihubvk
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 UnpromptedControl
Unprompted Control — это утилита, которая автоматически удаляет объекты с изображений и восстанавливает поврежденные области, используя методы глубокого обучения и смешивания. В этом процессе ключевую роль играют модели Control Net и Stable Diffusion Inpaint Pipeline, которые направляют восстановление и обеспечивают естественное слияние результатов с остальным изображением.
Однако метод имеет свои ограничения, особенно при работе с изображениями лиц и тел людей. В таких случаях может потребоваться маскирование не только самого объекта, но и его теней для достижения наилучшего результата.
Несмотря на эти сложности, репозиторий предлагает ценный инструмент для бесшовного восстановления и удаления объектов.
- Githiub
- Colab
@neural
Unprompted Control — это утилита, которая автоматически удаляет объекты с изображений и восстанавливает поврежденные области, используя методы глубокого обучения и смешивания. В этом процессе ключевую роль играют модели Control Net и Stable Diffusion Inpaint Pipeline, которые направляют восстановление и обеспечивают естественное слияние результатов с остальным изображением.
Однако метод имеет свои ограничения, особенно при работе с изображениями лиц и тел людей. В таких случаях может потребоваться маскирование не только самого объекта, но и его теней для достижения наилучшего результата.
Несмотря на эти сложности, репозиторий предлагает ценный инструмент для бесшовного восстановления и удаления объектов.
- Githiub
- Colab
@neural
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Душный NLP
Mixture-of-Agents — простой способ улучшения ответов LLM
Сегодня рассмотрим статью, которая описывает метод улучшения результатов LLM на разных бенчмарках без дообучения. Он называется Mixture-of-Agents (MoA).
Суть метода заключается в использовании нескольких LLM для генерации ответов. Авторы статьи создали многослойную структуру с несколькими агентами — собственно, моделями — на каждом слое. На вход подавали один вопрос. Каждый из агентов давал ответ. Затем полученные данные агрегировались и вместе с промптом передавались на следующий слой, где процесс запускался заново.
В итоге получался ответ, который превосходит по качеству все предыдущие. Интересно то, что модели показывают лучшие результаты, когда имеют доступ к выходным данным других LLM — даже если ответы последних не слишком качественные. Этот феномен авторы назвали «коллаборативностью LLM» (Сollaborativeness of LLMs).
Эксперименты показали, что использование разных LLM на разных слоях улучшает результаты. Агрегаторы тоже играют важную роль — если пропоузеры могут быть относительно простыми и легкими, то агрегаторы требуют значительных вычислительных ресурсов.
Бенчмарки подтвердили, что MoA — эффективный метод. Скажем, на AlpacaEval 2.0 и MT-Bench применение такой архитектуры дало прирост производительности до 8% по сравнению с GPT-4 Omni.
Впрочем, MoA есть куда расти. Например, в области уменьшения времени до первого токена. Из-за итеративной агрегации конечному пользователю приходится долго ждать ответа на вопрос. Авторы статьи намерены бороться с этим недостатком.
Рассказывайте в комментариях, что думаете о MoA?
Разбор подготовил❣ Никита Шевченко
Душный NLP
Сегодня рассмотрим статью, которая описывает метод улучшения результатов LLM на разных бенчмарках без дообучения. Он называется Mixture-of-Agents (MoA).
Суть метода заключается в использовании нескольких LLM для генерации ответов. Авторы статьи создали многослойную структуру с несколькими агентами — собственно, моделями — на каждом слое. На вход подавали один вопрос. Каждый из агентов давал ответ. Затем полученные данные агрегировались и вместе с промптом передавались на следующий слой, где процесс запускался заново.
В итоге получался ответ, который превосходит по качеству все предыдущие. Интересно то, что модели показывают лучшие результаты, когда имеют доступ к выходным данным других LLM — даже если ответы последних не слишком качественные. Этот феномен авторы назвали «коллаборативностью LLM» (Сollaborativeness of LLMs).
Эксперименты показали, что использование разных LLM на разных слоях улучшает результаты. Агрегаторы тоже играют важную роль — если пропоузеры могут быть относительно простыми и легкими, то агрегаторы требуют значительных вычислительных ресурсов.
Бенчмарки подтвердили, что MoA — эффективный метод. Скажем, на AlpacaEval 2.0 и MT-Bench применение такой архитектуры дало прирост производительности до 8% по сравнению с GPT-4 Omni.
Впрочем, MoA есть куда расти. Например, в области уменьшения времени до первого токена. Из-за итеративной агрегации конечному пользователю приходится долго ждать ответа на вопрос. Авторы статьи намерены бороться с этим недостатком.
Рассказывайте в комментариях, что думаете о MoA?
Разбор подготовил
Душный NLP
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Midjourney стал бесплатным! Разработчики только что выпустили полноценную веб-версию и снова открыли free trial для всех!
Теперь на сайте можно не только создавать изображения, но и просматривать ленту с работами других пользователей, а также изучать лучшие промпты. Каждая ваша генерация автоматически сохраняется в библиотеке. Бонус: в веб-версии за одну генерацию вы получаете сразу 4 готовых изображения.
Создавайте уникальные картинки прямо на сайте!
Теперь на сайте можно не только создавать изображения, но и просматривать ленту с работами других пользователей, а также изучать лучшие промпты. Каждая ваша генерация автоматически сохраняется в библиотеке. Бонус: в веб-версии за одну генерацию вы получаете сразу 4 готовых изображения.
Создавайте уникальные картинки прямо на сайте!
This media is not supported in your browser
VIEW IN TELEGRAM
Нейросетевая технология OmniCast помогает прогнозировать погоду с точностью до городского квартала
О создании новой, внедренной в Яндекс Погоду, технологии рассказали на Хабре. Разработчики поделились, как вообще Яндекс Погода создает прогноз и что изменилось с запуском OmniCast.
@neural
О создании новой, внедренной в Яндекс Погоду, технологии рассказали на Хабре. Разработчики поделились, как вообще Яндекс Погода создает прогноз и что изменилось с запуском OmniCast.
@neural