Telegram Web Link
Forwarded from Machinelearning
⚡️ HunyuanVideo: модели генерации видео по тексту от Tencent.

Tencent опубликовала в отрытый доступ модели с 13 млрд. параметров для генерации видео по текстовым промптам: HunyuanVideo и HunyuanVideo-PromptRewrite.

Архитектура HunyuanVideo простроена на пространственно-временном сжатии, которое позволяет обрабатывать видео и изображения в едином формате.

Входные текстовые запросы кодируются с помощью MLLM (комбинация CLIP and T5-XXL) и используются в качестве основы для генерации. Модель генерирует латент, который затем декодируется в изображения или видео с помощью 3D VAE.

HunyuanVideo-PromptRewrite - специальный файнтюн для адаптации и автоматического расширения пользовательских промптов к предпочтениям модели. В PromptRewrite 2 режима работы: Normal и Master:

🟢Режим Normal улучшает понимание моделью намерений пользователя, способствуя более точной интерпретации промпта.

🟢Режим Master улучшает описание композиции, освещения сцены генерации и движения камеры, что на выходе дает видео с более высоким визуальным качеством.

HunyuanVideo оценивалась 60 экспертами на 1533 промптах в сравнении с топовыми T2V-моделями: Gen-3, Luma 1.6 и тремя лучшими китайскими коммерческими моделями.

Результаты оценки показали, что HunyuanVideo достигает общего уровня удовлетворенности, особенно выделяясь качеством движения объектов.

▶️Планы развития HunyuanVideo:

🟠Бенчмарк Penguin Video;
🟠Web Demo (Gradio);
🟠Поддержка ComfyUI;
🟠Поддержка Diffusers;
🟠Модель и код инференса Image-to-Video версии.

⚠️ Минимальный объем GPU - 60 GB для 720pX1280pX129f и 45 GB для 544pX960pX129f. Рекомендованный GPU - 80 GB.

▶️Установка и инференс T2V в 720р:

# Clone repo:
git clone https://github.com/tencent/HunyuanVideo
cd HunyuanVideo

# Prepare conda environment
conda env create -f environment.yml
conda activate HunyuanVideo

# Install pip dependencies
python -m pip install -r requirements.txt

# Install flash attention v2
python -m pip install git+https://github.com/Dao-AILab/[email protected]

# Inference
python3 sample_video.py \
--video-size 720 \
--video-length 129 \
--infer-steps 50 \
--prompt "%prompt%" \
--flow-reverse \
--use-cpu-offload \
--save-path ./results


📌Лицензирование: Tencent Hunyuan Community License.


🟡Страница проекта
🟡Модель HunyuanVideo
🟡Модель HunyuanVideo-PromptRewrite
🟡Техотчет
🖥 GitHub


@ai_machinelearning_big_data

#AI #ML #Text2Video #Tencent #HunyuanVideo
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
OpenAI: мы приготовили классные подарки для всех.

Также OpenAI:
Forwarded from Machinelearning
✔️ OpenAI представила функцию «Проекты» для ChatGPT.

OpenAI анонсировала новую функцию «Проекты» для своего чат-бота ChatGPT. Эта функция позволит пользователям группировать чаты и данные, упрощая использование ChatGPT для конкретных задач.

Пользователи смогут объединять в проекты пользовательские данные, разговоры, GPT и простые чаты. Каждый чат в проекте будет иметь доступ ко всей информации внутри него. OpenAI продемонстрировала "Проекты" на седьмом по счету стриме цикла анонсов "12 Days of OpenAI"
openai.com

✔️ Anthropic разработала платформу для анализа использования больших языковых моделей.

Anthropic создала платформу Clio для изучения особенностей применения больших языковых моделей в реальных условиях. Clio использует LLM для анализа миллионов диалогов, выявляя общие закономерности использования без нарушения конфиденциальности пользователей. Платформа группирует диалоги по схожести, создаёт обобщённые описания тем и определяет возможные нарушения правил использования. В отличие от традиционных методов, Clio не предполагает просмотра диалогов людьми.

Anthropic применяет Clio для повышения безопасности Claude. Clio помогает выявлять скоординированные злоупотребления и отслеживать неизвестные угрозы, особенно в важные периоды запуска новых функций. Компания планирует сделать Clio доступной для общественности с целью формирования культуры прозрачности в сфере ИИ.
anthropic.com

✔️ NVIDIA QUEEN: алгоритм потоковой передачи видео с произвольной точкой обзора.

QUEEN (QUantized Efficient ENcoding) - это новый алгоритм, разработанный NVIDIA для эффективного кодирования и потоковой передачи видео с произвольной точкой обзора. QUEEN использует динамические гауссианы для представления сцены, что позволяет достичь высокого качества изображения при минимальном размере модели.

Алгоритм способен сократить размер модели до 0,7 МБ на кадр, обеспечивая при этом быстрое обучение (менее 5 секунд) и высокую скорость рендеринга (около 350 кадров в секунду). QUEEN основан на квантовании и разрежении атрибутов гауссиан и использует адаптивную маскирующую технику для разделения статического и динамического контента.
research.nvidia.com

✔️ Microsoft представила новую модель Phi-4.

Новая языковая модель Phi-4 от Microsoft Research демонстрирует производительность, сравнимую с гораздо более крупными моделями, используя всего 14 миллиардов параметров. Phi-4 превосходит свою обучающую модель, GPT-4, в ответах на вопросы по науке и технике и демонстрирует особую эффективность в математике: 56,1% правильных ответов на вопросы университетского уровня и 80,4% на задачи из математических олимпиад.

Phi-4 уже доступна в рамках ограниченного превью на платформе Azure AI Foundry для исследовательских целей. В открытый доступ Phi-4 будет опубликована на следующей неделе.
techcommunity.microsoft.com

✔️ Cadbury борется с искусственным интеллектом, засоряя обучающие данные бессмыслицей.

Индийский филиал кондитерской компании Cadbury начал рекламную кампанию под названием «Сделаем ИИ посредственным снова», целью которой является замедлить развитие искусственного интеллекта путем внесения искажений в обучающие данные.

Компания создала «первую в мире серверную ферму», генерирующую тысячи синтетических веб-сайтов, заполненных бессмысленным текстом. Цель состоит в том, чтобы «загрязнить» данные, которые модели искусственного интеллекта собирают из Интернета, вызывая ошибки, требующие постоянного вмешательства человека.
techspot.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🌟 FlashRNN: оптимизация RNN на современном оборудовании.

FlashRNN - библиотека, которая реализует традиционные RNN, такие как LSTM, GRU и сети Элмана, а также новейшую архитектуру sLSTM в CUDA и Triton.

В отличие от распространенных современных моделей архитектуры Transformers, RNN обладают возможностями отслеживания состояния, оставаясь актуальными для решения задач моделирования временных рядов и логического мышления.

FlashRNN предлагает два варианта оптимизации: чередующийся и объединенный.

🟢Чередующийся позволяет обрабатывать данные с большим размером скрытых состояний и значительно превосходит по скорости базовую реализацию PyTorch.

🟢Объединенный вариант агрегирует операции умножения матриц и вычисления функций в одно ядро, снижая количество обращений к памяти и позволяет хранить рекуррентные матрицы весов непосредственно в регистрах GPU.

За автоматизацию настройки параметров FlashRNN отвечает библиотека ConstrINT, которая решает задачи целочисленного удовлетворения ограничений, моделируя аппаратные ограничения в виде равенств, неравенств и ограничений делимости.

Эксперименты с FlashRNN показали существенное увеличение скорости работы: до 50 раз по сравнению с PyTorch. FlashRNN также позволяет использовать большие размеры скрытых состояний, чем нативная реализация Triton.

▶️ Локальная установка и пример запуска FlashRNN:

# Install FlashRNN
pip install flashrnn


# FlashRNN employs a functional structure, none of the parameters are tied to the `flashrnn` function:

import torch
from flashrnn import flashrnn

device = torch.device('cuda')
dtype = torch.bfloat16
B = 8 # batch size
T = 1024 # sequence length
N = 3 # number of heads
D = 256 # head dimension
G = 4 # number of gates / pre-activations for LSTM example
S = 2 # number of states

Wx = torch.randn([B, T, G, N, D], device=device, dtype=dtype, requires_grad=True)
R = torch.randn([G, N, D, D], device=device, dtype=dtype, requires_grad=True)
b = torch.randn([G, N, D], device=device, dtype=dtype, requires_grad=True)
states_initial = torch.randn([S, B, 1, N, D], device=device, dtype=dtype, requires_grad=True)

# available functions
# lstm, gru, elman, slstm

# available backend
# cuda_fused, cuda, triton and vanilla

states, last_states = flashrnn(Wx, R, b, states=states_initial, function="lstm", backend="cuda_fused")

# for LSTM the hidden h state is the first of [h, c]
# [S, B, T, N, D]
hidden_state = states[0]


📌Лицензирование: NXAI Community License:

🟠бесплатное использование в некоммерческих целях с маркировкой при публикации в отрытых источниках;

🟠получение коммерческой лицензии при годовом доходе свыше 100 млн.евро


🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #RNN #FlashRNN
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Chatgpt слишком стремительно развивается.
Forwarded from Machinelearning
🌟 DepthLab: инпейнт карт глубины на основе диффузионных моделей.

DepthLab - диффузионный механизм инпейнта карт глубины с двумя параллельными ветвями для задач заполнения 3D-сцен, генерации сцен на основе текстовых промптов, реконструкции с использованием DUST3R и заполнение глубины LiDAR.

Первая ветвь, Reference U-Net извлекает признаки из RGB-изображений, которые служат условием для второй ветви.

Вторая ветвь, Estimation U-Net, обрабатывает имеющиеся данные о глубине и маску, определяющую области, требующие восстановления. Признаки RGB, полученные из Reference U-Net, последовательно интегрируются в Estimation U-Net, что позволяет управлять процессом восстановления.

Взаимодействие между ветвями Reference U-Net и Estimation U-Net реализуется механизмом cross-attention, который использует CLIP encoder.

Архитектура DepthLab опирается на наработки Marigold и Stable Diffusion V2. Кодирование RGB-изображений и карт глубины в латентное пространство осуществляется VAE. Маска также кодируется с помощью VAE, что позволяет сохранить детальную информацию о форме и границах.

Обучение DepthLab проводилось на двух синтетических датасетах: Hypersim (54 тысячи обучающих образцов) и Virtual KITTI (20 тысяч обучающих образцов). Для расширения обучающей выборки использовались случайные искажения изображений и несколько стратегий маскирования: штрихи, окружности, квадраты и их комбинации.

Оценка качества восстановления проводилась на 5 наборах: NYUv2, KITTI, ETH3D, ScanNet, DIODE. В качестве метрик использовались абсолютная относительная ошибка (AbsRel) и точность в пределах δ1 = 1.25.

Результаты тестов демонстрируют, что DepthLab превосходит как дискриминативные (DiverseDepth, MiDaS, LeReS, Omnidata, HDN, DPT, DepthAnything, DepthAnythingV2), так и генеративные (Marigold, DepthFM, GeoWizard) методы в постоении карт глубины.


Для локального инференса потребуются модели:

🟢Marigold checkpoint;
🟢Энкодер CLIP-ViT-H-14-laion-2B;
🟢Набор чекпоинтов DepthLab.

▶️Локальная установка и инференс:

# Clone repo
git clone https://github.com/Johanan528/DepthLab.git
cd DepthLab

# Create conda env
conda env create -f environment.yaml
conda activate DepthLab

# Run inference
cd scripts
bash infer.sh



🟡Страница проекта
🟡Модель
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #DepthLab
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️Khoj - мощный ИИ агент.

Позволяет получать ответы из Интернета или документов и статей.

Создавайте собственных агентов, планируйте автоматизацию, проводите глубокие исследования.

Легко интегрируется с любым онлайн или локальный LLM (gpt, claude, qwen, mistral).

https://github.com/khoj-ai/khoj
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Новый веб-вьювер HDR и редактор для создания видеоклипов!

📺Web Viewer: https://srameo.github.io/projects/le3d/
🧑‍💻Github: https://github.com/Srameo/LE3D

#ComputerVision #3DReconstruction #GaussianSplatting
💥 Подборка годных ML плейлистов для
Обучения


1. Caltech CS156: Обучение на данных: https://youtube.com/playlist?list=PLD63A284B7615313A

2. Stanford CS229: Machine Learning: https://youtube.com/playlist?list=PLoROMvodv4rMiGQp3WXShtMGgzqpfVfbU

3. Прикладное машинное обучение: https://youtube.com/playlist?list=PLAqhIrjkxbuWI23v9cThsA9GvCAUhRvKZ

4. Введение в машинное обучение (Тюбинген): https://youtube.com/playlist?list=PL05umP7R6ij35ShKLDqccJSDntugY4FQT

5. Лекция по машинному обучению (Стефан Хармелинг): https://youtube.com/playlist?list=PLzrCXlf6ypbxS5OYOY3EN_0u2fDuIT6Gt

@neural
🧠 Начинаю обучение модели на GPU на 10к...

@neural
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🧠 DeepSeek обнаружили, что у их новой модели был момент озарения, когда она сама для себя разработала продвинутую технику рассуждения.

Оказывается, вам просто нужно правильно стимулировать модель.

Читой воды обучение с подкреплением (RL) может научить модель думать и рефлексировать.

Мы возвращаемся в эпоху AlphaGo: играя в бесчисленные партии Go и максимально увеличивая функцию вознаграждения (выигрыш в игре), используя чистый RL, AlphaGo научился побеждать лучших игроков мира.

Похоже это будет эра LLM RL.

📕 Paper

@ai_machinelearning_big_data

#DeepSeek #deepseekr1 #reasoning #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
💰GAMA-Bench

Принятие решений - сложный процесс, требующий различных навыков, что делает его хорошим тестов для оценки больших языковых моделей (LLM).

В данной работе исследователи изучали процесс принятия решений LLM через призму теории игр.

Существующие оценки в основном сосредоточены на случаях с двумя игроками, где LLM соревнуется с другим.

GAMA(γ)-Bench, новую структура для оценки способностей LLM в многоагентных средах через призму теории игр.

Он включает в себя восемь сценариев из классической теории игр и динамическую схему подсчета баллов, специально разработанную для количественной оценки производительности LLM.

γ-Bench очень гибкие настройки игры, что позволяет адаптировать систему подсчета баллов к различным параметрам игры, чтобы всесторонне оценить стратегии принятия решений

Статья: https://arxiv.org/abs/2403.11807
Код: https://github.com/CUHK-ARISE/GAMABench
Forwarded from Machinelearning
💥Релиз Qwen2.5-1M!

Теперь модель поддерживает контекст длиной 1 МИЛЛИОН ТОКЕН токенов 🔥

⭐️ Доступны 2 модели: Qwen2.5-7B-Instruct-1M и Qwen2.5-14B-Instruct-1M.

Доступен подробный технический отчет о серии Qwen2.5-1M! 📊

📖 Технический отчет: https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-1M/Qwen2_5_1M_Technical_Report.pdf
📄 Блог: https://qwenlm.github.io/blog/qwen2.5-1m/
🚀 Потестировать можно здесь: https://chat.qwenlm.ai
🤗 Huggingface: https://huggingface.co/collections/Qwen/qwen25-1m-679325716327ec07860530ba
Modelscope: https://modelscope.cn/collections/Qwen25-1M-d6cf9fd33f0a40

@ai_machinelearning_big_data

#qwen #opensource #ml #llm
Forwarded from Machinelearning
🧠 Oh sh**, here we go again.

Alibaba релизнули еще одну модель: Qwen2.5-Max

- MoE
- предварительно обученная на масштабных датасетах и пост-обученная с помощью SFT и RLHF
- превосходит DeepSeek V3 на бенчмарках: Arena Hard, LiveBench, LiveCodeBench, GPQA-Diamond
- Может генерить видео, картинки, поддерживает поиск в интернете.

📖 Релиз: https://qwenlm.github.io/blog/qwen2.5-max/
💬 Chat: https://chat.qwenlm.ai (choose Qwen2.5-Max as the model)
⚙️ API: https://alibabacloud.com/help/en/model-studio/getting-started/first-api-call-to-qwen?spm=a2c63.p38356.help-menu-2400256.d_0_1_0.1f6574a72ddbKE
🤗 HF: https://huggingface.co/spaces/Qwen/Qwen2.5-Max-Demo

#Qwen #ml #llm #Alibaba #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Серега стал жертвой нейронки DickPic.

@neural
2025/07/05 14:14:55
Back to Top
HTML Embed Code: