Telegram Web Link
Factors that change airway resistance
■ The major site of airway resistance is the medium-sized bronchi.
■ The smallest airways would seem to offer the highest resistance, but they do not
because of their parallel arrangement.
a. Contraction or relaxation of bronchial smooth muscle
■ changes airway resistance by altering the radius of the airways.
(1) Parasympathetic stimulation, irritants, and the slow-reacting substance of anaphylaxis (asthma) constrict the airways, decrease the radius, and increase the resistance
to airflow.
(2) Sympathetic stimulation and sympathetic agonists (isoproterenol) dilate the airways
via b2 receptors, increase the radius, and decrease the resistance to airflow.
b. Lung volume
■ alters airway resistance because of the radial traction exerted on the airways by surrounding lung tissue.
(1) High lung volumes are associated with greater traction on airways and decreased
airway resistance. Patients with increased airway resistance (e.g., asthma) “learn” to breathe at higher lung volumes to offset the high airway resistance associated
with their disease.
(2) Low lung volumes are associated with less traction and increased airway resistance,
even to the point of airway collapse.
c. Viscosity or density of inspired gas
■ changes the resistance to airflow.
■ During a deep-sea dive, both air density and resistance to airflow are increased.
■ Breathing a low-density gas, such as helium, reduces the resistance to airflow.
Breathing cycle—description of pressures and airflow
1. At rest (before inspiration begins)
a. Alveolar pressure equals atmospheric pressure.
■ Because lung pressures are expressed relative to atmospheric pressure, alveolar
pressure is said to be zero.
b. Intrapleural pressure is negative.
■ At FRC, the opposing forces of the lungs trying to collapse and the chest wall trying to expand create a negative pressure in the intrapleural space between them.
■ Intrapleural pressure can be measured by a balloon catheter in the esophagus.
c. Lung volume is the FRC.
2. During inspiration
a. The inspiratory muscles contract and cause the volume of the thorax to increase.
■ As lung volume increases, alveolar pressure decreases to less than atmospheric pres￾sure (i.e., becomes negative).
■ The pressure gradient between the atmosphere and the alveoli now causes air to flow
into the lungs; airflow will continue until the pressure gradient dissipates.
b. Intrapleural pressure becomes more negative.
■ Because lung volume increases during inspiration, the elastic recoil strength of the
lungs also increases. As a result, intrapleural pressure becomes even more negative
than it was at rest.
■ Changes in intrapleural pressure during inspiration are used to measure the dynamic
compliance of the lung
c. Lung volume increases by one Vt.
■ At the peak of inspiration, lung volume is the FRC plus one Vt.
3. During expiration
a. Alveolar pressure becomes greater than atmospheric pressure.
■ The alveolar pressure becomes greater (i.e., becomes positive) because alveolar gas
is compressed by the elastic forces of the lung.
■ Thus, alveolar pressure is now higher than atmospheric pressure, the pressure gradi￾ent is reversed, and air flows out of the lungs.
b. Intrapleural pressure returns to its resting value during a normal (passive) expiration.
■ However, during a forced expiration, intrapleural pressure actually becomes positive.
This positive intrapleural pressure compresses the airways and makes expiration
more difficult.
■ In COPD, in which airway resistance is increased, patients learn to expire slowly
with “pursed lips” to prevent the airway collapse that may occur with a forced
expiration.
c. Lung volume returns to FRC
1. Asthma
■ is an obstructive disease in which expiration is impaired.
■ is characterized by decreased FVC, decreased FEV1, and decreased FEV1/FVC.
■ Air that should have been expired is not, leading to air trapping and increased FRC.
2. COPD
■ is a combination of chronic bronchitis and emphysema.
■ is an obstructive disease with increased lung compliance in which expiration is
impaired.
■ is characterized by decreased FVC, decreased FEV1, and decreased FEV1/FVC.
■ Air that should have been expired is not, leading to air trapping, increased FRC, and a
barrel-shaped chest.
a. “Pink puffers” (primarily emphysema) have mild hypoxemia and, because they maintain
alveolar ventilation, normocapnia (normal Pco2).
b. “Blue bloaters” (primarily bronchitis) have severe hypoxemia with cyanosis and,
because they do not maintain alveolar ventilation, hypercapnia (increased Pco2). They
have right ventricular failure and systemic edema.
3. Fibrosis
■ is a restrictive disease with decreased lung compliance in which inspiration is impaired.
■ is characterized by a decrease in all lung volumes. Because FEV1 is decreased less than is
FVC, FEV1/FVC is increased (or may be normal).
Chart for subscribers
Body Fluids
■ Total body water (TBW) is approximately 60% of body weight.
■ The percentage of TBW is highest in newborns and adult males and lowest in adult females
and in adults with a large amount of adipose tissue.
Distribution of water
1. Intracellular fluid (ICF)

■ is two-thirds of TBW.
■ The major cations of ICF are K+
and Mg2+
■ The major anions of ICF are protein and organic phosphates (adenosine triphosphate
[ATP], adenosine diphosphate [ADP], and adenosine monophosphate [AMP]).
2. Extracellular fluid (ECF)
■ is one-third of TBW.
■ is composed of interstitial fluid and plasma. The major cation of ECF is Na+
■ The major anions of ECF are Cl-
and HCO3
a. Plasma is one-fourth of the ECF. Thus, it is one-twelfth of TBW (1/4 × 1/3).
■ The major plasma proteins are albumin and globulins.
b. Interstitial fluid is three-fourths of the ECF. Thus, it is one-fourth of TBW (3/4 × 1/3).
■ The composition of interstitial fluid is the same as that of plasma except that it has
little protein. Thus, interstitial fluid is an ultrafiltrate of plasma.
3. 60-40-20 rule
■ TBW is 60% of body weight.
■ ICF is 40% of body weight.
■ ECF is 20% of body weight
.
Physiology pinned a photo
■ A patient is injected with 500 mg of mannitol. After a 2-hour equilibration period, the concentration of mannitol in plasma is 3.2 mg/100 mL. During the equilibration period, 10% of the injected mannitol is excreted in urine. What is the patient’s ECF volume?
Volume = Amount/Concentration
(Amount injected-Amount excreted)/ Concentration
= (500 mg - 50 mg) / (3.2 mg /100 ml)
= 14.1 L

#renal_physiology
يوم الأحد تقيم قناة physiology مسابقة في فسيولوجي القلب cardiovascular عشرين سؤال لمن أراد المشاركه التواصل على الرابط التالي
@physiology20_bot
الوقت : الساعه الخامسه عصراً بتوقيت مكة المكرمة
سيتم استقبال 100 متسابق فقط
Physiology pinned «يوم الأحد تقيم قناة physiology مسابقة في فسيولوجي القلب cardiovascular عشرين سؤال لمن أراد المشاركه التواصل على الرابط التالي @physiology20_bot الوقت : الساعه الخامسه عصراً بتوقيت مكة المكرمة سيتم استقبال 100 متسابق فقط»
الجامعات المشاركة
1- جامعة الزقازيق
2-جامعة عمران
3- جامعة النيلين
4- جامعة المناقل
5- جامعة طب ازهر دمياط
6- جامعة إب
7- جامعة مدينة الأردن Gorden city
8- جامعة العلوم والتكنولوجيا
9- جامعة مصر للعلوم والتكنولوجيا
10- جامعة جبلة
11- جامعة دار السلام الدولية
12- جامعة طرابلس
13-Aydın adnan menderes/turkey

14-جامعة تعز
15- جامعة الحديدة
16-جامعة دنقلا
17-جامعة حلب
18-جامعة المنيا
نتيجة المسابقة
عدد المشاركين الفعليين 14 مشارك
المركز الأول
فضل الحالمي جامعة جبلة
المركز الثاني
علياء القادري جامعة إب
المركز الثالث
عمار عبدالله جامعة الحكمة
🎲 اختبار 'CVD physiology'
مسابقة الفسيولوجي كارديو
🖊 16 سؤالًا · 45 ث
وبهذا تكون تجربتنا في عالم المسابقات أنتهت معكم ...
قناة physiology ...
أصبح عمرها ما يقرب خمس سنوات وثمانية أشهر ... شاركنا فيها الاسئلة والشروحات والفيديوهات وكل ماهو جديد في علم وظائف الأعضاء ..
كلمتك
أرسلها هنا
https://www.tg-me.com/physiology20_bot
Why this channel don't reach 35k 😅
Finally we reach 35K
⭐️⭐️⭐️⭐️⭐️
- أفضل البوتات الطبية المساعدة لتزويدك بكل ما تحتاجه في مسيرتك التعليمية Medical bots 🤖

⭐️بوت النماذج والتفريغات لكل سنوات الطب وفي النظام القديم والجديد
@MCQs_mogahedbot
⭐️بوت داتا د.ناجي اسكندر في الفيسو (ديجرام ،تفريغات،فيديوهات،نصائح.....
@Diagram_Nagi_Bot
⭐️بوت داتا الفارما ل د.عبدالمتعال د.طارق المقطري د.نجيب الهندي
@Pharmacology_foda_Bot
⭐️بوت داتا د.سامح غازي في الاناتومي والباثو
@Dr_Sameh_ghazy_antom_pathoBot
⭐️ بوت داتا مرحلة الكلينكال
@AUData_bot
⭐️بوت داتا كل المراحل
@Medical_MhM_bot
⭐️بوت داتا د.وحدان في الاناتومي والامبريو والجراحه (notes and vedioes....)
@Anatomy_Surgery_Dr_wahdan_Bot
⭐️بوت داتا د.صالح باحاج في الميكرو والمناعه
@Microbiology_Saleh_Bahaj_Bot

⭐️بوت داتا د.أحمد فريد في الاناتومي والامبريو
@Anatomy77_bot
⭐️بوت د.علي حسيب
@Ali_Hassib_surgerybot
⭐️Kaplan
@Kaplan_7Bot
⭐️pathoma
@Pathoma_7Bot
⭐️osmosis
@OSMOSIS_7Bot
⭐️broad and Beyond
@Board_Beyond_Bot
⭐️Medical books 📚
@Medical_Book7_bot
#شارك_لزملائك
Please open Telegram to view this post
VIEW IN TELEGRAM
2025/06/29 21:58:00
Back to Top
HTML Embed Code: