Zenzeli
any non-Abelian connected Lie group has a smooth fixed-point free action on Euclidean space https://www.maths.ed.ac.uk/~v1ranick/papers/oliverphd.pdf
когда-то Дима Каледин спросил видел ли я доказательство сопряженности всех максимальных компактных подгрупп в группе Ли
без структурной теории. Идея прикольная, но вот по этой причине буквально не реализуется, потому что теоремы о неподвижной точке нет
нужно дополнительную структуру навешивать -- что делает Мостов например в " Some new decomposition theorems for semi-simple groups"
D. Kaledin (kaledin) replied to your LJR post in which you said:
[...] Известно, что у каждой алг. группы над C есть макс. компактная подгруппа, и они все сопряжены. Вопрос: есть ли у этого прямое доказательство, не использующее ничего из структурной теории? В идеале, хотелось бы взять какое-нибудь точное представление, выбрать в нем произвольную эрмитову метрику, а потом запустить какой-нибудь естественный поток, который в бесконечности даст такую метрику, которая индуцирует именно макс. компактную (причем по конкструкции пр-во всех таких "хороших" метрик будет ретрактом про-ва всех метрик, потому стягиваемо, и из этого стандартным аргументом следует, что любая компактная сопрягается в нашу). [...]
без структурной теории. Идея прикольная, но вот по этой причине буквально не реализуется, потому что теоремы о неподвижной точке нет
нужно дополнительную структуру навешивать -- что делает Мостов например в " Some new decomposition theorems for semi-simple groups"
D. Kaledin (kaledin) replied to your LJR post in which you said:
[...] Известно, что у каждой алг. группы над C есть макс. компактная подгруппа, и они все сопряжены. Вопрос: есть ли у этого прямое доказательство, не использующее ничего из структурной теории? В идеале, хотелось бы взять какое-нибудь точное представление, выбрать в нем произвольную эрмитову метрику, а потом запустить какой-нибудь естественный поток, который в бесконечности даст такую метрику, которая индуцирует именно макс. компактную (причем по конкструкции пр-во всех таких "хороших" метрик будет ретрактом про-ва всех метрик, потому стягиваемо, и из этого стандартным аргументом следует, что любая компактная сопрягается в нашу). [...]
👍3
https://arxiv.org/abs/2209.03853
On the metric structure of section ring
Siarhei Finski
The main goal of this article is to study for a projective manifold and an ample line bundle over it the relation between metric and algebraic structures on the associated section ring.
More precisely, we prove that once the kernel is factored out, the multiplication operator of the section ring becomes an approximate isometry (up to normalization) with respect to the L2-norms and the induced Hermitian tensor product norm. We also show that the analogous result holds for the L1 and L∞-norms if instead of the Hermitian tensor product norm, we consider the projective and injective tensor norms induced by L1 and L∞-norms respectively.
Then we show that L2-norms associated with continuous plurisubharmonic metrics are actually characterized by the multiplicativity properties of this type. Using this, we refine the theorem of Phong-Sturm about quantization of Mabuchi geodesics from the weaker level of Fubini-Study convergence to the stronger level of norm equivalences.
On the metric structure of section ring
Siarhei Finski
The main goal of this article is to study for a projective manifold and an ample line bundle over it the relation between metric and algebraic structures on the associated section ring.
More precisely, we prove that once the kernel is factored out, the multiplication operator of the section ring becomes an approximate isometry (up to normalization) with respect to the L2-norms and the induced Hermitian tensor product norm. We also show that the analogous result holds for the L1 and L∞-norms if instead of the Hermitian tensor product norm, we consider the projective and injective tensor norms induced by L1 and L∞-norms respectively.
Then we show that L2-norms associated with continuous plurisubharmonic metrics are actually characterized by the multiplicativity properties of this type. Using this, we refine the theorem of Phong-Sturm about quantization of Mabuchi geodesics from the weaker level of Fubini-Study convergence to the stronger level of norm equivalences.
arXiv.org
On the metric structure of section ring
The main goal of this article is to study for a projective manifold and an ample line bundle over it the relation between metric and algebraic structures on the associated section ring.
More...
More...
https://www.iflscience.com/lost-works-from-ancient-greek-great-geometer-discovered-among-hundreds-of-islamic-texts-77926
В Лейдене нашли два неизвестных трактата Апполония Пергского на арабском языке
В Лейдене нашли два неизвестных трактата Апполония Пергского на арабском языке
IFLScience
Lost Works From Ancient Greek "Great Geometer" Discovered Among Hundreds Of Islamic Texts
What other treasures are hidden under our noses?
https://arxiv.org/abs/2502.01149
Parabolic automorphisms of hyperk{ä}hler manifolds: Orbits and Betti maps
Ekaterina Amerik (LMO), Serge Cantat (IRMAR)
We study parabolic automorphisms of irreducible holomorphically symplectic manifolds with a lagrangian fibration. Such automorphisms are (possibly up to taking a power) fiberwise translations on smooth fibers, and their orbits in a general fiber are dense ([1]). We provide a simple proof that the associated Betti map is of maximal rank, in particular, the set of fibers where the induced translation is of finite order is dense as well. R{É}SUM{É}. Nous {é}tudions les automorphismes paraboliques des vari{é}t{é}s symplectiques holomorphes qui sont irr{é}ductibles et projectives.
Parabolic automorphisms of hyperk{ä}hler manifolds: Orbits and Betti maps
Ekaterina Amerik (LMO), Serge Cantat (IRMAR)
We study parabolic automorphisms of irreducible holomorphically symplectic manifolds with a lagrangian fibration. Such automorphisms are (possibly up to taking a power) fiberwise translations on smooth fibers, and their orbits in a general fiber are dense ([1]). We provide a simple proof that the associated Betti map is of maximal rank, in particular, the set of fibers where the induced translation is of finite order is dense as well. R{É}SUM{É}. Nous {é}tudions les automorphismes paraboliques des vari{é}t{é}s symplectiques holomorphes qui sont irr{é}ductibles et projectives.
arXiv.org
Parabolic automorphisms of hyperk{ä}hler manifolds: Orbits and Betti maps
We study parabolic automorphisms of irreducible holomorphically symplectic manifolds with a lagrangian fibration. Such automorphisms are (possibly up to taking a power) fiberwise translations on...
https://arxiv.org/abs/2502.06497
Combinatorial Ricci Flow and Thurston's Triangulation Conjecture
Feng Ke, Ge Huabin
Thurston's triangulation conjecture asserts that every hyperbolic 3-manifold admits a geometric decomposition into ideal hyperbolic tetrahedra, a result proven only for certain special 3-manifolds. This paper presents combinatorial Ricci flow as a systematic and general approach to addressing Thurston's triangulation conjecture, showing that the flow converges if and only if the triangulation is geometric. First, we prove the rigidity of the most general hyperbolic polyhedral 3-manifolds constructed by isometrically gluing partially truncated and decorated hyperbolic tetrahedra, demonstrating that the metrics are uniquely determined by cone angles modulo isometry and decoration changes. Then, we demonstrate that combinatorial Ricci flow evolves polyhedral metrics toward complete hyperbolic structures with geometric decompositions when convergent. Conversely, the existence of a geometric triangulation guarantees flow convergence.
Combinatorial Ricci Flow and Thurston's Triangulation Conjecture
Feng Ke, Ge Huabin
Thurston's triangulation conjecture asserts that every hyperbolic 3-manifold admits a geometric decomposition into ideal hyperbolic tetrahedra, a result proven only for certain special 3-manifolds. This paper presents combinatorial Ricci flow as a systematic and general approach to addressing Thurston's triangulation conjecture, showing that the flow converges if and only if the triangulation is geometric. First, we prove the rigidity of the most general hyperbolic polyhedral 3-manifolds constructed by isometrically gluing partially truncated and decorated hyperbolic tetrahedra, demonstrating that the metrics are uniquely determined by cone angles modulo isometry and decoration changes. Then, we demonstrate that combinatorial Ricci flow evolves polyhedral metrics toward complete hyperbolic structures with geometric decompositions when convergent. Conversely, the existence of a geometric triangulation guarantees flow convergence.
arXiv.org
Combinatorial Ricci Flow and Thurston's Triangulation Conjecture
Thurston's triangulation conjecture asserts that every hyperbolic 3-manifold admits a geometric decomposition into ideal hyperbolic tetrahedra, a result proven only for certain special...
👍1
https://arxiv.org/abs/2502.06467
A non-autonomous Hamiltonian diffeomorphism with roots of all orders
Nicolas Grunder, Baptiste Serraille
We provide an example of a non-autonomous Hamiltonian diffeomorphism with roots of all orders. This answers a question of Egor Shelukhin.
A non-autonomous Hamiltonian diffeomorphism with roots of all orders
Nicolas Grunder, Baptiste Serraille
We provide an example of a non-autonomous Hamiltonian diffeomorphism with roots of all orders. This answers a question of Egor Shelukhin.
arXiv.org
A non-autonomous Hamiltonian diffeomorphism with roots of all orders
We provide an example of a non-autonomous Hamiltonian diffeomorphism with roots of all orders. This answers a question of Egor Shelukhin.
https://arxiv.org/abs/2502.06303
Topological volumes of certain complete affine manifolds
Alberto Casali, Marco Moraschini
We provide an estimate of the amenable category of oriented closed connected complete affine manifolds whose fundamental group contains an infinite amenable normal subgroup. As an application we show that all such manifolds have zero simplicial volume. This answers a question by Lück in the case of complete affine manifolds.
Our construction also provides the vanishing of stable integral simplicial volume and minimal volume entropy. This means that such manifolds satisfy integral approximation.
Topological volumes of certain complete affine manifolds
Alberto Casali, Marco Moraschini
We provide an estimate of the amenable category of oriented closed connected complete affine manifolds whose fundamental group contains an infinite amenable normal subgroup. As an application we show that all such manifolds have zero simplicial volume. This answers a question by Lück in the case of complete affine manifolds.
Our construction also provides the vanishing of stable integral simplicial volume and minimal volume entropy. This means that such manifolds satisfy integral approximation.
arXiv.org
Topological volumes of certain complete affine manifolds
We provide an estimate of the amenable category of oriented closed connected complete affine manifolds whose fundamental group contains an infinite amenable normal subgroup. As an application we...
👍1
смотрите вот у вас есть куча выпуклых тел в пространстве
и вам надо эту кучу разобрать.
то есть все тела двигать так, одновременно,
чтобы каждое можно было загнать на бесконечность.
как это можно сделать: можно взять точку не лежащую ни на каком теле и начать раздувать в ней гомотетией все.
сами тела конечно тоже будут раздуваться но тем не менее уходить на бесконечность. и нужно заметить что выпуклое тело можно уместить в его гомотетию всегда.
если же требовать что кучу разбирать мы должны двигая тела поочередно, то вроде как на плоскости это всегда можно сделать,
а в пространстве уже нельзя и можно придумать конфигурацию, такую что никакой объект нельзя вытащить (из каких-то спиц и массивных тел).
и вам надо эту кучу разобрать.
то есть все тела двигать так, одновременно,
чтобы каждое можно было загнать на бесконечность.
как это можно сделать: можно взять точку не лежащую ни на каком теле и начать раздувать в ней гомотетией все.
сами тела конечно тоже будут раздуваться но тем не менее уходить на бесконечность. и нужно заметить что выпуклое тело можно уместить в его гомотетию всегда.
если же требовать что кучу разбирать мы должны двигая тела поочередно, то вроде как на плоскости это всегда можно сделать,
а в пространстве уже нельзя и можно придумать конфигурацию, такую что никакой объект нельзя вытащить (из каких-то спиц и массивных тел).
👍2🤔1
https://arxiv.org/abs/2502.07626
Foliated Plateau problems, geometric rigidity and equidistribution of closed k-surfaces
Sébastien Alvarez
In this note, we survey recent advances in the study of dynamical properties of the space of surfaces with constant curvature in three-dimensional manifolds of negative sectional curvature. We interpret this space as a two-dimensional analogue of the geodesic flow and explore the extent to which the thermodynamic properties of the latter can be generalized to the surface setting. Additionally, we apply this theory to derive geometric rigidity results, including the rigidity of the hyperbolic marked area spectrum.
Foliated Plateau problems, geometric rigidity and equidistribution of closed k-surfaces
Sébastien Alvarez
In this note, we survey recent advances in the study of dynamical properties of the space of surfaces with constant curvature in three-dimensional manifolds of negative sectional curvature. We interpret this space as a two-dimensional analogue of the geodesic flow and explore the extent to which the thermodynamic properties of the latter can be generalized to the surface setting. Additionally, we apply this theory to derive geometric rigidity results, including the rigidity of the hyperbolic marked area spectrum.
arXiv.org
Foliated Plateau problems, geometric rigidity and equidistribution...
In this note, we survey recent advances in the study of dynamical properties of the space of surfaces with constant curvature in three-dimensional manifolds of negative sectional curvature. We...
The savage garden of curvature tensors. Magnússon.pdf
661.8 KB
Вот кстати текст, который я обрел не помню когда и где
но которого сейчас нет в интернете даже следов
Гуннара Тора Магнуссона
The savage garden of curvature tensors
кладу себя чтобы не сгинул
но которого сейчас нет в интернете даже следов
Гуннара Тора Магнуссона
The savage garden of curvature tensors
кладу себя чтобы не сгинул
👍5❤2
https://arxiv.org/abs/2312.01012
The volume of a divisor and cusp excursions of geodesics in hyperbolic manifolds
Simion Filip, John Lesieutre, Valentino Tosatti
We give a complete description of the behavior of the volume function at the boundary of the pseudoeffective cone of certain Calabi-Yau complete intersections known as Wehler N-folds. We find that the volume function exhibits a pathological behavior when N>=3, we obtain examples of a pseudoeffective R-divisor D for which the volume of D+sA, with s small and A ample, oscillates between two powers of s, and we deduce the sharp regularity of this function answering a question of Lazarsfeld. We also show that h^0(X,[mD]+A) displays a similar oscillatory behavior as m increases, showing that several notions of numerical dimensions of D do not agree and disproving a conjecture of Fujino. We accomplish this by relating the behavior of the volume function along a segment to the visits of a corresponding hyperbolic geodesics to the cusps of a hyperbolic manifold.
The volume of a divisor and cusp excursions of geodesics in hyperbolic manifolds
Simion Filip, John Lesieutre, Valentino Tosatti
We give a complete description of the behavior of the volume function at the boundary of the pseudoeffective cone of certain Calabi-Yau complete intersections known as Wehler N-folds. We find that the volume function exhibits a pathological behavior when N>=3, we obtain examples of a pseudoeffective R-divisor D for which the volume of D+sA, with s small and A ample, oscillates between two powers of s, and we deduce the sharp regularity of this function answering a question of Lazarsfeld. We also show that h^0(X,[mD]+A) displays a similar oscillatory behavior as m increases, showing that several notions of numerical dimensions of D do not agree and disproving a conjecture of Fujino. We accomplish this by relating the behavior of the volume function along a segment to the visits of a corresponding hyperbolic geodesics to the cusps of a hyperbolic manifold.
arXiv.org
The volume of a divisor and cusp excursions of geodesics in...
We give a complete description of the behavior of the volume function at the boundary of the pseudoeffective cone of certain Calabi-Yau complete intersections known as Wehler N-folds. We find that...
https://arxiv.org/abs/2502.13099
Semigroups, Cartier divisors and convex bodies
Askold Khovanskii
The theory of Newton--Okounkov bodies provides direct relations and points out analogies between the theory of mixed volumes of convex bodies, on the one hand, and the intersection theories of Cartier divisors and of Shokurov b-divisors, on the other hand. The classical inequalities between mixed volumes of convex bodies correspond to inequalities between intersection indices of nef Cartier divisors on an irreducible projective variety and between the birationally invariant intersection indices of nef type Shokurov b-divisors on an irreducible algebraic variety. Such algebraic inequalities are known as Khovanskii--Teissier inequalities. Our proof of these inequalities is based on simple geometric inequalities on two dimensional convex bodies and on pure algebraic arguments. The classical geometric inequalities follow from the algebraic inequalities. We collected results from a few papers which were published during the last forty five years. Some theorems of the present paper were never stated, but all ideas needed for their proofs are contained in the published papers. So we avoid all heavy proofs. Our goal is to present an overview of the area. Notions of homogeneous polynomials on commutative semigroups and of their polarizations provide an adequate language for discussing the subject. We use this language through the paper.
Semigroups, Cartier divisors and convex bodies
Askold Khovanskii
The theory of Newton--Okounkov bodies provides direct relations and points out analogies between the theory of mixed volumes of convex bodies, on the one hand, and the intersection theories of Cartier divisors and of Shokurov b-divisors, on the other hand. The classical inequalities between mixed volumes of convex bodies correspond to inequalities between intersection indices of nef Cartier divisors on an irreducible projective variety and between the birationally invariant intersection indices of nef type Shokurov b-divisors on an irreducible algebraic variety. Such algebraic inequalities are known as Khovanskii--Teissier inequalities. Our proof of these inequalities is based on simple geometric inequalities on two dimensional convex bodies and on pure algebraic arguments. The classical geometric inequalities follow from the algebraic inequalities. We collected results from a few papers which were published during the last forty five years. Some theorems of the present paper were never stated, but all ideas needed for their proofs are contained in the published papers. So we avoid all heavy proofs. Our goal is to present an overview of the area. Notions of homogeneous polynomials on commutative semigroups and of their polarizations provide an adequate language for discussing the subject. We use this language through the paper.
arXiv.org
Semigroups, Cartier divisors and convex bodies
The theory of Newton--Okounkov bodies provides direct relations and points out analogies between the theory of mixed volumes of convex bodies, on the one hand, and the intersection theories of...
давайте выбирать в конечной группе равномерно и независимо два элемента и считать вероятность с какой они коммутируют.
если эта вероятность больше 5/8, то группа абелева.
то же самое верно для аменабельных групп но сложнее
если эта вероятность больше 5/8, то группа абелева.
то же самое верно для аменабельных групп но сложнее
🤯3🥰1
https://arxiv.org/abs/2502.06366
What makes an algebraic curve special?
Gregorio Baldi
A survey of special curves, special subvarieties of g, and related topics. A large portion of the text discusses various possible interpretation of the word 'special' in this context by giving also concrete examples. One highlight is the bi-algebraic viewpoint for atypical intersections appearing in Hodge theory as well as, more recently, in Teichmüller theory.
What makes an algebraic curve special?
Gregorio Baldi
A survey of special curves, special subvarieties of g, and related topics. A large portion of the text discusses various possible interpretation of the word 'special' in this context by giving also concrete examples. One highlight is the bi-algebraic viewpoint for atypical intersections appearing in Hodge theory as well as, more recently, in Teichmüller theory.
arXiv.org
What makes an algebraic curve special?
A survey of special curves, special subvarieties of $\mathcal{M}_g$, and related topics. A large portion of the text discusses various possible interpretation of the word 'special' in this context...
Forwarded from Матразнобой (Altan)
Воспоминания Пауло Рибенбойма об Александре Гротендике, они дружили.
Пауло рассказывает:
• друзья звали Гротендика Шуриком;
• о бразильском периоде;
• Пауло убеждён, что Шурик ни одной книги не прочёл от корки до корки;
• Шурик не поехал в Москву на вручении премии Филдса в 1966 году потому что был против преследования Даниеля и Синявского;
• Шурик занимался только наукой, у которой не было даже теоретического военного применения;
• Шурик брился налысо и ходил в чёрном, подражая стилистике русского muzhik;
• у Шурика не было французского гражданства. На его заднем дворе регулярно обретались диссиденты и буддийские монахи;
• о борьбе за экологию;
• о поздних годах.
Пауло рассказывает:
• друзья звали Гротендика Шуриком;
• о бразильском периоде;
• “My theories are like enormous trees from which the theorems fall like ripe fruits.”;
• Пауло убеждён, что Шурик ни одной книги не прочёл от корки до корки;
• Шурик не поехал в Москву на вручении премии Филдса в 1966 году потому что был против преследования Даниеля и Синявского;
• Шурик занимался только наукой, у которой не было даже теоретического военного применения;
• Шурик брился налысо и ходил в чёрном, подражая стилистике русского muzhik;
• у Шурика не было французского гражданства. На его заднем дворе регулярно обретались диссиденты и буддийские монахи;
• о борьбе за экологию;
• о поздних годах.
👍3
https://www.imj-prg.fr/theses/pdf/milan_perera.pdf
La décomposition de Zariski : une approche valuative
La décomposition de Zariski : une approche valuative
Forwarded from Inner radio
Задачка:
На плоскости дана выпуклая кривая, ограничивающая фигуру площади 1. Будем называть её псевдодиаметром хорду, разделяющую её на две равные по длине части.
Какой максимальной (sup) площади может быть область точек через которые проходят хотя бы два псевдодиаметра?
(мне пока неизвестно даже ответ 1 или < 1, области там ограничены прикольными кривыми по типу каустик, хотя непосредственная связь мне также не ясна)
На плоскости дана выпуклая кривая, ограничивающая фигуру площади 1. Будем называть её псевдодиаметром хорду, разделяющую её на две равные по длине части.
Какой максимальной (sup) площади может быть область точек через которые проходят хотя бы два псевдодиаметра?
(мне пока неизвестно даже ответ 1 или < 1, области там ограничены прикольными кривыми по типу каустик, хотя непосредственная связь мне также не ясна)
кстати почти официально, но уж больно не терпится поделиться -- в скором времени иншала админ канала поедет постдрочить в imj-prg на деньги Карима Адипразито
у нашей группы есть зум-семинар, ближайший четвертого марта
https://sites.google.com/view/combarithmgeo/schedule
также можно рекомендовать докладчиков
оно вообще говоря по "комбинаторике" но на самом деле по всему
у нашей группы есть зум-семинар, ближайший четвертого марта
https://sites.google.com/view/combarithmgeo/schedule
также можно рекомендовать докладчиков
оно вообще говоря по "комбинаторике" но на самом деле по всему
Google
CAGe - Schedule
Next Meeting
The meeting will take place on Monday, June 30 at the Institut de Mathématiques de Jussieu, Sorbonne Université, Paris in Room 1516-4-13 (4th floor).
Also through zoom using the link:
https://cnrs.zoom.us/j/92318027540?pwd=rduObmTSjxvPWPue…
The meeting will take place on Monday, June 30 at the Institut de Mathématiques de Jussieu, Sorbonne Université, Paris in Room 1516-4-13 (4th floor).
Also through zoom using the link:
https://cnrs.zoom.us/j/92318027540?pwd=rduObmTSjxvPWPue…
👍5❤3
https://arxiv.org/abs/2502.17303
Asymptotically geodesic surfaces
Fernando Al Assal, Ben Lowe
A sequence of distinct closed surfaces in a hyperbolic 3-manifold M is asymptotically geodesic if their principal curvatures tend uniformly to zero. When M has finite volume, we show such sequences are always asymptotically dense in the 2-plane Grassmann bundle of M. When M has infinite volume and is geometrically finite, we show such sequences do not exist. As an application of the former, we obtain partial answers to the question of whether a negatively curved Riemannian 3-manifold that contains a sequence of asymptotically totally geodesic or totally umbilic surfaces must be hyperbolic. Finally, we give examples to show that if the dimension of M is greater than 3, the possible limiting behavior of asymptotically geodesic surfaces is less constrained than for totally geodesic surfaces.
Asymptotically geodesic surfaces
Fernando Al Assal, Ben Lowe
A sequence of distinct closed surfaces in a hyperbolic 3-manifold M is asymptotically geodesic if their principal curvatures tend uniformly to zero. When M has finite volume, we show such sequences are always asymptotically dense in the 2-plane Grassmann bundle of M. When M has infinite volume and is geometrically finite, we show such sequences do not exist. As an application of the former, we obtain partial answers to the question of whether a negatively curved Riemannian 3-manifold that contains a sequence of asymptotically totally geodesic or totally umbilic surfaces must be hyperbolic. Finally, we give examples to show that if the dimension of M is greater than 3, the possible limiting behavior of asymptotically geodesic surfaces is less constrained than for totally geodesic surfaces.
arXiv.org
Asymptotically geodesic surfaces
A sequence of distinct closed surfaces in a hyperbolic 3-manifold M is asymptotically geodesic if their principal curvatures tend uniformly to zero. When M has finite volume, we show such...
